ceramica

Ceramica:materiale ricavato dalla cottura, in appositi forni,disostanze minerali naturali, principalmente argilla e caolino. In particolare, dal caolino si ottengono la porcellana, le terraglie ed i grès fini, dalle argille comuni si ottengono le terrecotte e i grès naturali, e dalle argille fini le maioliche.

Immagine1 Immagine2

Tipi, procedimenti e tecniche

Con riferimento ala porosità del materiale, prendono il nome di ceramiche a pasta compatta il grès e la porcellana, di ceramiche a pasta porosa la terracotta, la terraglia e la maiolica: le prime sono per loro natura impermeabili all’acqua, mentre le seconde lo diventano solo dopo essere state sottoposte a vetrinatura o smaltatura. La terracotta è la meno pregiata tra le ceramiche porose e si ottiene dalla cottura a temperature relativamente basse (900-1200 °C). A seconda della percentuale e del tipo di ossido di ferro contenuta nell’argilla impiegata, durante la cottura il materiale acquista colore rosso acceso, rosso scuro, marrone o nero. Il grès si ottiene dall’argilla cotta a temperature tra 1200 e 1280 °C ed è un materiale durissimo. Può essere bianco, grigio o rosso scuro e, essendo a pasta compatta, viene vetrinato solo a scopo decorativo. La maiolica o faenza viene prodotta con argilla fine a basso contenuto di ossidi di ferro, per cui è di colore oscillante tra il rosso chiaro e il giallo paglierino; viene cotta di solito a 900-950 °C e rivestita di smalto o vetrina trasparente.

Immagine3

Preparazione e lavorazione dell’argilla:

Consiste nella lenta colata in uno stampo di argilla liquida fatta con l’aggiunta di acqua), la pasta nella sua forma liquida si riversa in una cavità, stampo in gesso, lasciando uno strato di argilla sulla superficie dello stampo.
Il cast è poi rimosso dopo un periodo di tempo. Questo metodo è usato per fare cavi o sprofondate pezzi come vasi, zuppa e caffè tè e pentole.
Stampo / modulo può anche essere ruotato.
Immagine5

Immagine6 Immagine7

Essiccazione e cottura

Affinché cuocia senza rompersi, l’argilla deve essere essiccata, cioè lasciata ad essiccare perché perda la maggior parte dell’umidità. Quando l’impasto argilloso è quasi completamente asciutto risulta morbido e poroso e può essere cotto sul fuoco a temperature che si aggirano tra 650 e i 750 °C: è questo il metodo tuttora seguito per la produzione di manufatti nelle zone meno sviluppate del mondo. I primi forni, che fecero la loro comparsa nel VI millennio a.C., richiedevano una particolare attenzione perché anche il combustibile (dapprima legna ed in seguito carbone) poteva influire sul risultato finale, variando il grado di durezza dell’argilla e producendo ad esempio terraglie anziché grès.

Oggi vengono applicati i metodi della fiamma ossidante e della fiamma riducente, che consistono nell’aumentare o ridurre la quantità di ossigeno disponibile per la combustione. A seconda del tipo di cottura si ottengono infatti materiali diversi; ad esempio l’argilla contenente un alta percentuale di ossido di ferro appare rossa se cotta con fiamma ossidante, grigia o era se cotta con fiamma riducente: la variazione di colore è dovuta al cambiamento delle percentuali relative di ossido ferroso (nero) e d ossido ferrino (rosso) variabili a seconda della reazione chimica.

Immagine8

Decorazione

Gli oggetti in argilla possono essere decorati prima e dopo la cottura. Quando il materiale è essiccato solo in parte e quindi leggermente rigido “allo stato cuoio”, è ancora possibile applicare manici o beccucci al recipiente, il cui corpo può essere a sua volta abbellito con incisioni o piccoli fori, oppure con figure in rilievo prodotte con uno stampino. Il vasaio può inoltre applicare decorazioni metalliche a fuoco oppure levigate le parti del manufatto in modo che le particelle ruvide rimangano all’interno e la superficie esterna risulti liscia e lucida.

Altre tecniche sfruttano l’effetto ornamentale dato dalla sovrapposizione di argille di colori diversi. Nel metodo dell’ingobbio il materiale semiliquido può essere distribuito sul contenitore per mezzo di una siringa, oppure usato per immergerci il pezzo in modo che questo venga rivestito da una patina spessa pochi millimetri. La procedura nota come neriage consiste invece nel mischiare argille di tinte differenti per farne un impasto che possa essere lavorato a lastra, al torni, a colombini etc. Altre tecniche sono infine lo sgraffiato, con cui si realizzano disegni decorativi graffiando la superficie con punte metalliche, e la serigrafia, che trasferisce la decorazione sulla ceramica tramite uno schermo di seta.

Immagine9

Smalti e vetrine

Nella storia della ceramica, i prodotti privi di rivestimento sono sempre stati più comuni di quelli smaltati o vetrinati. La vetrina è una copertura trasparente che si applica all’argilla ed è, come dice il nome, simile a vetro. Infatti è costituita da silice o da quarzo e nitrato o carbonato di sodio o di potassio, ossido e carbonato di piombo, oltre ad eventuali sostanze coloranti.
Sottoposta a fusione, tale miscela si trasforma in una sostanza vetrosa che prende il nome di “fritta” e che, una volta solidificata, viene frantumata e polverizzata e quindi stesa sull’argilla cruda o sul “biscuit”(biscotto), cioè sul materiale già sottoposto ad una prima cottura. Dopo l’applicazione il pezzo deve nuovamente essere posto in forno a una temperatura compatibile con quella necessaria per la cottura dell’argilla.
Lo smalto bianco o stannifero ha la medesima composizione della vetrina, cui viene però aggiunto stagno, che conferisce una colorazione bianca e coprente. Altre tinte si ricavano unendo allo smalto bianco o alla vetrina ossidi metallici: ad esempio, gli ossidi di ferro e i Sali di uranio conferiscono al pezzo una sfumatura rossa, mentre l’antimonio produce il giallo e gli ossidi di zinco e cobalto il blu. Il rame dà un colore verde alle vetrine di ossido di piombo e una tinta turchese alle vetrine alcaline, mentre la cottura in forno riducente dà luogo ad una sfumatura rossa.Immagine10

Decorazione soprasmalto e sottosmalto

Le ceramiche possono essere dipinte prima e dopo la cottura. Nel Neolitico si ricorreva ad ocre ed altri pigmenti naturali per decorare pezzi privi di rivestimento. Gli ossidi metallici impiegati assieme alle vetrine richiedono temperature più elevate per far si che il colore si fissi.
Qualora si utilizzino smalti, occorre invece sottoporre il pezzo a cottura “a piccolo fuoco”(cioè a bassa temperatura). Decalcomanie (disegni stampati su carta sottile che si trasferiscono sull’oggetto ceramico lasciando un decoro) sono il metodo ornamentale più diffuso su larga scala. Mentre nel Settecento le lastre stampate venivano incise a mano, oggi ci si avvale della litografia e della fotografia.
Nell’antichità i principali produttori di ceramiche nell’Asia orientale furono la Cina, la Corea ed il Giappone.

Immagine11

Ceramici strutturali

Si classificano come ceramici strutturali i materiali che sono in grado di sopportare sollecitazioni meccaniche di vario tipo (cerchi a flessione, compressione, urto, attrito, usura) e/o condizioni aggressive di temperatura e ambiente.

In base alle applicazioni si possono classificare in:
Ceramici con funzione termiche:radiatori di infrarosso, fibre isolanti, refrattari ed isolanti speciali, scambiatori termici, scudi termici, scambiatori di calore, forni IR, pompe di calore, isolanti, refrattari ed isolanti per altissime temperature, etc.
Ceramici termomeccanici: camere di combustione, condotti di gas di scarico, rotori a turbina, boccole per l’estrusione dei metalli, contenitori per gas e liquidi corrosivi ad alta temperatura, supporti per l’abbattimento delle emissioni, recupero di calore dai cicli industriali, etc.
Ceramici antiusura:utensili da taglio, guidafili, componenti per la lavorazione della carta, tenute per pompe, rubinetti e valvole,mezzi macinati, ugelli, stampi.
Ceramici antiproiettile: protezioni balistiche e schermi antiradiazione, protezione elicotterie e veicoli militari.
Ceramici per l’impiego del nucleare: materiali di contenimento, di schermatura, immobilizzazione scorie radioattive, schermi di magneti, materiali per prima parete

Per i materiali ceramici esiste una stretta relazione tra processo e proprietà finali del materiale.

In altre parole il processo determina la microstruttura, le cui caratteristiche determinano le proprietà finali del materiale. La microstruttura ideale in un prodotto è quindi funzione del tipo di impiego proposto.

I requisiti microstrutturali più importanti sono:
– tipo, qualità, distribuzione di fasi cristalline o vetrose;
– caratteristiche delle fasi a bordo grano;
– distribuzione, dimensione, stechiometria dei grani;
– quantità, distribuzione, dimensione di porosità e difetti.

Le prestazioni dei materiali durante specifiche applicazioni dipendono:

– da fattori intrinseci come composizione chimica, caratteristiche microstrutturali, densità, strato difettivo;
– dalle
interazioni che intervengono ad alta temperatura tra l’ambiente ed il materiale (ossidazione, corrosione, usura);
– dalle
caratteristiche superficiali che sono legate al processo di produzione ed alle lavorazioni (meccaniche, ultrasoniche, laser, etc.) necessarie a garantire finiture e tolleranze richieste dalle applicazioni in componenti complessi.

Per molte applicazioni vengono richiesti materiali ceramici con combinazioni particolari di proprietà chimiche,fisiche, termo-meccaniche. Spesso queste proprietà non sono compatibili tra di loro in un solo materiale.
Al momento le soluzioni più promettenti sono:
– composti a matrice ceramica (in cui le seconde fasi sono ceramiche o metalliche);
– ceramici multistrato e a gradiente funzionale, ossia aventi proprietà variabili attraverso lo spessore del materiale.

Nanoceramici e multistrato

L’obbiettivo della ricerca è quello di sviluppare ceramiche tecniche avanzate con particolari microstrutture al fine di ottenere materiali ad alte prestazione termo-meccaniche e tribologiche. In particolare,sono studiati i materiali ceramici a microstruttura nanometrica sia monofasci, sia compositi. I monofasci e i compositi a struttura naometrica, in cui la seconda fase è dispersa sotto forma di particelle, intesi per applicazioni strutturali sono attualmente oggetto di grande interesse e studio per le potenziali capacità che hanno di superare certe limitazioni delle ceramiche a microstruttura micrometrica e di poter migliorare allo stesso tempo alcune caratteristiche come la resistenza all’usura. Presso questo Istituto vengono prodotti e studiati materiali monofasci da polveri nanometriche prodotte con tecniche non convenzionali presso alti Istituti italiani e stranieri. Materiali completamente densi possono essere ottenuti mediante pressatura a caldo utilizzando, nel caso, opportuni aiuto sinterizzanti che ad alta temperatura formano una fase liquida. Le proprietà di questi materiali innovativi, vengono poi confrontate con quelle di materiali analoghi ottenuti da polveri commerciali più grossolane. Vengono inoltre prodotti e studiati nanocompositi a funzione volumetrica variabile di fase secondaria. La polvere usata come rinforzo viene generalmente ottenuta mediante metodi laser o tecniche al plasma presso altri Istituti italiani o stranieri. Nel considerare tipo e quantità della fase di rinforzo dei compositi nanoceramici, è necessario che vengano mantenute, o eventualmente migliorate, le proprietà della matrice di partenza. Per le ceramiche nanostrutturate, sono stati scelti i sistemi monobasici a base di carburo di silicio  (SiC) e nitruro di silicio (Si3N4); tra i compositi, quelli a base di alluminia/carburo di silicio (AI2O3/SiC) e nitruro di silicio/carburo di silicio (Si3N4/SiC). La caratterizzazione microstrutturale dei materiali si avvale di tecniche quali difrattometria a raggi X, la microscopia elettronica a scansione e l’analisi d’immagine per l’individuazione delle fasi chimiche presenti, la morfologia della microstruttura e la quantificazione dei parametri che la contraddistinguono.
La caratterizzazione delle proprietà termo-meccaniche  e
tribologiche è realizzato tramite misure di durezza (macro, micro e nano), di costanti elastiche (modulo di Yung e coefficiente di Poisson), di resistenza alla frattura e di tenacità (anche ad alta temperatura e in atmosfera controllata), di espansione termica, di stabilità durante trattamenti termici (ossidazione), di resistenza all’usura e del coefficiente di attrito.

 

 

 

Annunci

touch screen

                                                    I TOUCH SCREEN

 

Il funzionamento degli schermi touch screen

Sono sempre più numerosi i dispositivi elettronici di uso comune, presenti sul mercato che offrono la possibilità di essere utilizzati attraverso interfacce intuitive ed accattivanti. In questo contesto, la tecnologia “touch screen” compare senz’altro come una delle più diffuse, importanti ed apprezzate: telefoni cellulari, eletrodimestici, pc e sportelli bancomat sono solo alcuni dei sistemi con cui quotidianamente l’uomo si intefaccia attraverso uno schermo sensibile al tocco.

Le modalità di funzionamento delle tecnologie su cui si basa il concetto dei touch screen sono svariate: tipicamente si impiegano grandezze elettriche, la cui variazione di intensità fornisce informazioni utili al sistema di controllo per identificare la posizione del tocco.

 

Componenti di un sistema touch screen

Un dispositivo touch screen è costituito da tre componenti base:

  1. un gruppo schermo-sensore,
  2. un controller
  3. un driver software.

kcnekc

 

  • Il sensore di un dispositivo touch screen è, solitamente, un pannello di vetro trasparente, la cui superficie è sensibile al tocco, che viene posto a ricoprire l’area del monitor preposta alla visualizzazione. Il principio generale di funzionamento del pannello è comunque esprimibile come segue: al momento del contatto fra il pannello sensibile e il dito, viene modificato, e univocamente determinato, il valore di un’opportuna grandezza originata dal pannello stesso. La variazione così generata è utilizzata come segnale per la localizzazione della zona di tocco.
  • Il controller è una scheda elettronica che ha il compito di far dialogare lo schermo tattile con il computer: essa riceve le informazioni che il sensore genera nel momento in cui viene toccato e le traduce in opportune comunicazioni per il PC.
  • Il driver è il software che permette al dispositivo touch screen e al computer di lavorare insieme. Esso, infatti, “spiega” al sistema operativo come interpretare i segnali inviati dal controller nel momento del tocco. Touch screen resistivi.

 

Touch screen capacitivi

I dispositivi touch screen più noti e maggiormente diffusi, a causa della loro versatilità, facilità di realizzazione, versatilità ed economicità, sono quelli a funzionamento resistivo. Questo tipo di tecnologia racchiude numerose varianti realizzative le quali presentano, comunque, un certo numero di caratteristiche comuni. L’architettura, per esempio, si può identificare per tutte le tipologie come segue: lo schermo è composto da due pannelli, rivestiti e da una sottile patina conduttrice. I due rivestimenti conduttivi, separati da una sottile intercapedine di aria e da punti separatori, in configurazione di riposo non vengono a contatto fra loro, garantendo un isolamento elettrico fra gli stessi. Durante il funzionamento viene applicata, in maniera opportuna, una differenza di potenziale fra i due strati e, poiché la superficie rivolta verso l’utente dello strato più esterno è flessibile, il tocco dell’utilizzatore fa sì che i due pannelli vengano a contatto in un punto. Ciò si traduce nella chiusura di un circuito elettrico i cui dati caratteristici permettono di effettuare la misurazione.

acwe

 

 

Al momento del contatto fra le membrane si realizza un circuito caratterizzato da valori di grandezze elettriche univoci, diversi cioè per ogni punto dello schermo. L’interfaccia elettronica raccoglie un primo valore analogico di tensione, proporzionale alla coordinata orizzontale, e successivamente un secondo, proporzionale a quella verticale. Dall’analisi dei valori rilevati si può risalire univocamente alla posizione dell’area dello schermo che è stata premuta.

L’attivazione dello schermo avviene mediante pressione sul dispositivo, ciò consente di utilizzare i touch screen resistivi a mani nude, se si indossano guanti o tramite penne o qualsiasi altro oggetto capace di imprimere forza sul display.

Touch screen capacitivi

A differenza dei pannelli basati su tecnologia resistiva, la tecnologia capacitiva è priva di parti in movimento, caratteristica che la rende costruttivamente più affidabile. Inoltre, mentre il rilevamento del tocco basato su tecnologia resistiva necessita di due rivestimenti conduttivi, i pannelli capacitivi utilizzano un solo strato conduttivo, protetto da una sottilissima copertura di vetro.

Il principio di funzionamento è il seguente: ai quattro angoli della lamina di ossido conduttivo viene applicata una tensione opportuna, così da generare un campo elettrico uniforme sulla superficie stessa. La tecnologia capacitiva consente di rilevare la posizione in cui è stato toccato uno schermo tattile monitorando i valori di capacità elettrica (o capacitanza) che si registrano al variare della distanza relativa fra due parti conduttive. L’avvicinamento del dito allo schermo, infatti, altera il valore del campo elettrico: il dito dell’utilizzatore costituisce l’armatura di un condensatore, connessa a terra, lo strato conduttivo l’altra armatura, mentre lo strato di vetro funziona da dielettrico. Questa configurazione consente il passaggio di una piccola quantità di corrente, il cui effetto si manifesta nei circuiti agli angoli del substrato sotto forma di oscillazioni dei valori di frequenza ed è percepito dall’elettronica di controllo.

ascasc

Il dispositivo funziona a mani nude o tramite penne apposite, ma non può essere attivato tramite oggetti elettrostaticamente scarichi (come penne o tessere di plastica) né indossando guanti.

 

Differenze

 

Visibilità in ambienti interni

  • Resistivo: ottima
  • Capacitivo: ottima

 

Visibilità in ambienti esterni

  • Resistivo: povera, lo strato extra riflette troppo la luce ambientale
  • Capacitivo: ottima

 

Sensibilità al tocco

  • Resistivo: la pressione di cui abbiamo bisogno per effettuare il contatto con lo schermo, può essere effettuata con le dita (anche coi guanti), unghie, pennini, etc..
  • Capacitivo: anche il minimo contatto delle vostra dita ricche di elettroni con il display è sufficiente per attivare la capacità di rilevamento. Non funziona con oggetti inanimati, unghie o guanti. Il riconoscimento della scrittura manuale è quindi problematica.

 

Costo

  • Resistivo: economico da utilizzare nel design di un cellulare
  • Capacitivo: decisamente più costoso di schermi resistivi.

 

Robustezza

  • Resistivo: La natura stessa degli schermi resistivi denota che il loro strato superiore è morbido, soffice abbastanza per premere verso il basso. Questo rende vulnerabile lo schermo a graffi e altri danni minori. Uno schermo resistivo richiede frequenti calibrazioni. Tuttavia, uno strato resistivo sullo schermo di plastica fa in modo che questi dispositivi, già robusti, non si rompano con una caduta.
  • Capacitivo: Essendo di vetro può essere utilizzato come strato esterno. Anche se non invulnerabile (e certamente inclini a rottura agli impatti più forti), il vetro è più resistente a graffi e imperfezioni.

 

N-Uova terra

N-Uova terra

Immagine

N-Uova terra è un composto di argilla e gesso naturale derivante dai gusci d’uovo utilizzato per la realizzazione di elementi contenitivi per piante da giardino. La caratteristica di questo materiale è la sua composizione: 70% di argilla e 30% di gesso ottenuto dai gusci delle uova di gallina.

 

N-Uova terra nasce dall’esigenza di utilizzare gli scarti delle uova ad uso alimentare.

Le proprietà compositive del guscio ricco di calcio e proprio di una sostanza della pellicola stimolatrice di collagene, hanno permesso il suo utilizzo in ambito della coltivazione di piante e fiori da giardino. Questa miscela conferisce effetti benefici per la pianta come concime e come antiparassitario naturale.

 

I gusci delle uova vanno lavati accuratamente e fatti asciugare, facendo attenzione a non eliminare la pellicola protettiva interna, stimolatrice di collagene. Successivamente i gusci vanno tritati fino ad ottenere una polvere simile al gesso.

 

Il gesso naturale viene unito all’argilla: sette parti di argilla e tre di gesso. L’argilla conferirà la giusta solidità al contenitore.

ImmagineImmagineImmagine

 

A questa miscela viene aggiunta l’acqua fino ad ottenere un composto omogeneo che verrà modellato per creare il vaso contenitivo per la pianta; (modellazione manuale o con stampo) ottenuta la forma desiderata, il vaso viene messo ad asciugare in un essiccatoio, o semplicemente all’aria, su un piano di legno. Quando il grigio bagnato dell’argilla lascerà il posto a un grigio più chiaro, il contenitore sarà pronto per essere cotto (a circa 900 gradi) in un forno apposito. Volendo però il vaso può anche essere completato con la sola asciugatura, proprio come si faceva un tempo. Nell’asciugatura, l’argilla perderà gran parte dell’acqua di cui è costituita, di conseguenza il vaso potrebbe risultare di dimensioni anche molto ridotte rispetto alle dimensioni iniziali.

 

Successivamente il vaso è pronto per ospitare la pianta desiderata. Il composto può semplicemente essere aggiunto alla terra come concime per dare tutti gli aspetti benefici alla pianta.

ImmagineImmagineImmagine

 

Clash (materiale inventato)

Clash e un materiale che, prende dimensioni volumetriche e morbide diverse sfruttando l’elasticita di una struttura di multistrato in PU soft & hard che ingloba un altro sandwich di SMA (shape memory alloys). L’intenzione era la combinazione tra due sollecitazione , una mechanica che sono i srati metallici e l’altra dinamica basandoci sulla memoria di forma dei tre materiali.

Clash
Sandwich

Il SMA (generalmente fatto di rame-aluminium-nickel) mantiene la memoria della sua forma a freddo, riacquisendola quando viene surriscaldata. Il PU e un ottimo termo-isolante  e puo venire con diversi intensita di durezza. Queste characteristiche ci permettono di poter realizzare  diverse forme a scelta, con una struttura di sostegno interna  che regga la persona.

1

Diversi ambienti possibili

Diversi ambienti possibili

GLI SCHERMI CURVI (Rivisto da Karim Fayad)

I componenti:

I display al plasma sono sostanzialmente delle lampade a luce fluorescente (come i neon). Molte piccole celle posizionate in mezzo a due pannelli di vetro mantengono una mistura inerte di gas nobili (neon e xeno).il gas nelle celle viene elettricamente trasformato in un plasma, il quale poi eccita i fosfori ad emettere luce.i gas di xeno e neon in un televisore al plasma sono contenuti in centinaia di migliaia di piccole celle posizionate tra due pannelli di vetro.anche dei lunghi elettrodi vengono inseriti tra i pannelli di vetro, davanti e dietro le celle. Gli elettrodi di indirizzamento sono dietro le celle, lungo il pannello di vetro posteriore.Gli elettrodi trasparenti dello schermo, che sono circondati da materiale elettrico isolante e coperti di uno strato protettivo in ossido di magnesio, sono montati davanti alle celle,lungo il vetro anteriore.la circuiteria di controllo carica gli elettrodi che si incrociano ad una cella, creando una differenza di potenziale tra davanti e dietro, provocando la ionizzazione dei gas e la formazione di plasma; quando gli ioni del gas si dirigono verso gli elettrodi e collidono vengono emessi dei fotoni.

Ogni pixel è fatto di tre sottocelle separate, ognuna con fosfori di diversi colori.Una sottocella ha il fosforo per la luce rossa, una per la luce verde e l’altra per la luce blu. Questi colori si uniscono assieme per creare il colore totale del pixel, analogamente ai computer a tre colori. Variando gli impulsi di corrente che scorrono atraverso le diverse celle migliaia di volte al secondo, il sistema di controllo può aumentareo diminuire l’intensità di ogni colore di ogni sottocella per creare miliardi di diverse combinazioni di verde, rosso e blu.in questo modo il sistema di controllo può produrre la maggior parte dei colori visibili.

Plasma-display-composition

Il vetro(Risultato dalla curvatura dello schermo)

La lastra di vetro viene messa sullo stampo e con esso introdotto nel forno. La lastra si rammollisce e per il peso proprio, si adagia sullo stampo nel sistema a gravità, oppure viene accompagnata dalle pinze meccaniche se le curve sono tali da non permettere con la sola forza di gravità l’adesione della stessa allo stampo.

Curvatura vetro

Prototipazione Rapida _ RP

021 rapid-prototyping-propeller-fdm 451186

La prototipazione rapida è un insieme di tecniche industriali che consentono la produzione di oggetti di geometria complessa, in tempi molto ridotti, a partire dalla definizione matematica dell’oggetto realizzata su un modello tridimensionale, volte a realizzare il cosiddetto prototipo

Indipendentemente da come lo si realizza, per prototipo si intende “il primo elemento della serie”. Questi può essere concettuale, funzionale, tecnico o di pre-serie, e in ogni caso può svolgere funzioni differenti nell’azienda: può servire per valutare costi, tempi di ciclo, risposta del mercato e così via.

Si basa sulla considerazione che ogni oggetto costituito da tante sezioni di spessore infinitesimo. Il prototipo viene, così realizzato sezione dopo sezione, trasformando il problema da tridimensionale in bidimensionale. Gli oggetti sono ottenuti con progressiva aggiunta di materia. Per questo motivo la tecnologia RP è anche definita tecnica di produzione per strati o per piani (layer manufacturing)

Definizione

Il prototipo non è una necessità avvertita solo dalle moderne aziende. Il ricorso al prototipo è, infatti, un’esigenza sentita sin dall’antichità, quando ci si poteva affidare solo a carta e attrezzi da disegno, per cui la realizzazione del prototipo permetteva di effettuare importanti osservazioni sul progetto in corso. I materiali e le tecniche con cui i prototipi si realizzano sono diversi e, ricorrendo a tecniche tradizionali, la loro costruzione è affidata ad artigiani o modellisti. In questo caso ci troviamo di fronte a una difficoltà incompatibile con le esigenze odierne della competizione globale: la diminuzione dei costi e dei tempi di realizzazione.

Mentre negli scenari competitivi è ampiamente sopportabile un aumento dei costi di sviluppo, sicuramente non è accettabile un ritardo per l’immissione sul mercato di un dato prodotto. Infatti un ritardo di pochi mesi può causare una perdita sugli utili anche del 30%, mentre un aumento dei costi di sviluppo, anche del 50%, è ampiamente sopportabile per le imprese.

Per quanto premesso sono stati messi a punto processi con l’obiettivo di ridurre sia i costi di realizzazione che i tempi di costruzione del prototipo stesso; queste tecniche vengono definite rapid prototyping (RP) o prototipazione rapida.

Lo sviluppo delle prime macchine RP è dovuto a Charles W. Hull, che per primo realizzò una macchina di tipo SLA-1 (StereoLitographic Apparatus). Successivamente gli studi sono avanzati così da giungere a generazioni successive della SLA e messa a punto di tecnologie differenti quali LOM (Laminated Object Manufactoring), SLS (Selective Laser Sintering), FDM (Fused Deposition Modeling), LENS (Laser engineered net shaping). Anche lo scenario d’impiego è cambiato, poiché lo sviluppo di queste macchine non è più affidato alla collaborazione con grosse aziende o centri di ricerca, ma soprattutto grazie alla diffusione nelle piccole e medie imprese, imputabile alla sensibile diminuzione dei costi di queste tecnologie.

La prototipazione rapida si differenzia dalle tecniche tradizionali di lavorazioni meccaniche perché mentre queste ultime operano per asportazione di materiale, ossia ottengono la forma voluta da un blocco all’interno della quale essa già esiste, le tecniche RP operano su una base concettuale inversa, ossia per addizione di materiale, con la possibilità di poter ottenere forme anche molto complesse, impossibili da realizzare con le lavorazioni tradizionali, semplicemente aggiungendo materiale strato per strato. Si parla, infatti, di layered manufacturing (fabbricazione stratificata).

Classificazione delle tecniche RP

La prototipazione rapida è una tecnica piuttosto recente, ma anche se giovane si può tranquillamente affermare che i materiali e le macchine evolvono continuamente. Ogni casa costruttrice ha sviluppato e continua a sviluppare una propria tecnica con l’impiego di materiali molto differenti tra loro. Infatti la classificazione principale delle tecniche RP è sulla natura dei materiali impiegati, principalmente sul diverso stato dei materiali impiegati, in particolare polveri, liquidi, solidi. Oggi l’impiego di polveri sta assumendo sempre maggiore importanza, poiché teoricamente la macchina può rimanere la stessa e, cambiando il tipo di polvere, si possono ottenere oggetti con caratteristiche differenti, sia estetiche sia meccaniche.

Oltre alle polveri, che possono essere a un componente o due componenti per la presenza di un legante, ci sono tecniche che si basano su liquidi, costituiti sostanzialmente da resine che vengono fatte polimerizzare, e infine l’uso di materiali solidi quali fili o fogli speciali di carta.

Le fasi della RP

Macchina per prototipazione rapida a sinterizzazione selettiva mediante laser

La prototipazione rapida si può paragonare all’operazione di stampa di un testo, solo un po’ più complicata. In dettaglio le fasi che portano alla realizzazione del prototipo sono le seguenti:

  1. Creazione del file STL
  2. Gestione del file STL
  3. Costruzione del prototipo layer by layer (strato dopo strato)
  4. Post trattamenti

Fase 1: Creazione del file STL

È una fase preliminare alla prototipazione vera e propria e consiste nella generazione del file STL e nella sua verifica. Il file STL (Standard Triangulation Language To Layer) è uno standard grafico che descrive l’oggetto tramite una decomposizione in triangoli delle superfici che lo compongono. In pratica le superfici del pezzo vengono meshate (‘“mesh” significa “maglia”) con elementi triangolari. Approssimativamente il numero di questi triangoli è tanto maggiore quanto meglio si vuole approssimare la superficie. Lo standard STL fu sviluppato inizialmente dalla “3D Systems” ed è attualmente lo standard accettato da quasi tutti i sistemi di prototipazione rapida in commercio.

La fase di generazione del file STL si può scomporre in due sotto-processi; in particolare la prima sotto-fase impegna l’intelletto del progettista e consiste nel realizzare il modello matematico, esclusivamente in ambiente CAD, partendo da due strade ben distinte e precisamente:

  • Mediante l’ausilio integrale di software CAD
  • Mediante l’impiego di tecniche di ingegneria inversa

La prima delle due precedenti è la strada che si percorre quando si realizza un prodotto che si ha già in mente e che si vuole mettere nero su bianco, oppure si deve procedere alla modifica di un prodotto esistente di cui si ha già il modello matematico. La seconda strada è indicata quando non si dispone o non esiste il modello matematico e si procede, mediante tecniche di ingegneria inversa (reverse engineering), ossia mediante appositi strumenti si scansiona la superficie dell’oggetto di cui si vuole il modello CAD. Questi restituiscono un certo numero di punti appartenenti alle superfici scansionate, punti che in gergo si individuano con il nome “nuvola di punti”. La nuvola viene elaborata tramite CAD o software dedicati per ottenere il modello matematico tridimensionale.

La seconda sotto-fase della fase 1 consiste nel realizzare il file di estensione .STL (Standard Triangulation Language) mediante apposite utility di esportazione o direttamente dal CAD qualora questa utility sia integrata oppure si deve prima salvare in un formato intermedio (Iges, Acis-Sat) e poi con software dedicato realizzare l’STL. Bisogna fare attenzione a non effettuare troppi passaggi prima di arrivare all’STL per evitare un deterioramento eccessivo della matematica del modello.

Fase 2: Gestione del file STL

Una volta generato il file STL si deve verificare che sia esente da errori. Il controllo si fa attraverso software dedicati, commerciali come il Magics RP della “Materialise” o open source mediante i quali oltre a individuare e correggere gli errori presenti, si possono progettare i supporti per le parti a sbalzo, orientare gli oggetti (operazione che può influenzare fortemente il risultato finale), modificarli ed eseguire lo slicing, cioè generare le “fette” che sovrapposte le une alle altre daranno vita al solido finale. Lo slicing è una operazione critica perché determina le caratteristiche superficiali dell’oggetto finito. Questa operazione può essere di tipo uniforme oppure adattativo quando lo spessore delle slice (letteralmente: fette) è variabile e lo si sceglie in funzione della curvatura della superficie al fine di adattare meglio la geometria finale, riducendo l’effetto staircase (le superfici inclinate sono approssimate da scalini). Una descrizione più specifica sarà descritta più avanti.

Fase 3: Costruzione del prototipo “Layer by Layer”

Consiste nell’inviare alla macchina il file STL o le slice, a seconda del modello di prototipatrice, e procedere con la deposizione del materiale strato per strato fino ad arrivare all’oggetto finale. Questa fase può durare alcune ore in funzione delle dimensioni dell’oggetto in particolare dell’altezza, pertanto un’accurata scelta dell’orientazione è importante sia per la finitura superficiale sia per ridurre i tempi macchina.

Fase 4: Post trattamenti

Sono operazioni manuali il cui scopo è togliere l’oggetto stampato dalla macchina e liberarlo dal supporto o dal materiale in eccesso ed eventualmente operare ulteriori finiture. Queste possono essere semplici, nel caso in cui si tratta di rimuovere il prototipo dalle polveri in eccesso, o leggermente più complicate, come nel caso della tecnica PolyJET, dove si ricorre a un’idropulitrice che rimuove il liquido di supporto. In altri casi si può procedere a un miglioramento delle superfici ricorrendo a trattamenti superficiali quali l’impiego di carta abrasiva o verniciatura.

Problematiche della RP

Come ogni attività anche la RP è soggetta ad alcune problematiche che influenzano il risultato finale, pertanto un’attenta analisi preliminare e una corretta applicazione delle metodologie derivanti da queste analisi aiuta a diminuire di molto gli inconvenienti che potrebbero verificarsi.

Problematiche di generazione del STL

La prima problematica che interviene è quella legata alla generazione del file STL, dato che un eccesso di errori presenti in esso può deteriorare a tal punto la rappresentazione dell’oggetto che il risultato finale è tale da non consentire l’utilizzo del prototipo. Gli errori più comuni e le cause che li generano sono:

  • Discontinuità del verso della normale dei triangoli; i triangoli presentano differente orientazione che genera rugosità superficiale sul pezzo finito. Si è appurato che questo problema si presenta quando il pezzo occupa contemporaneamente più quadranti e il software non gestisce questo baco.
  • Overlapping (sovrapposizione) dei triangoli: alcuni triangoli risultano parzialmente o completamente sovrapposti. Questo genere di incongruenza si presenta maggiormente quando si fa uso di operazioni booleane.
  • Holes (fori): i software preposti alla generazione dell’STL non sono in grado di gestire correttamente le operazioni booleane e possono creare dei fori che devono essere chiusi
  • Bad contours (contorni imperfetti): i triangoli, per effetto di una errata scelta della tolleranza e delle caratteristiche della superficie, risultano discontinui pertanto si deve ricorrere a una operazione di stitching (ricucitura), ossia la superficie o una parte deve essere tirata in modo da far combaciare i lati dei triangoli.

Problematiche di slicing

Rapid_prototyping_slicing

Illustrazione del software che sviluppa posizione, forma e dimensioni degli slice. Voxel è il volume elementare (l’analogo del “pixel” in tre dimensioni) e cioè il più piccolo elemento distinguibile in uno spazio tridimensionale. Ogni “voxel” sarà individuato dalle coordinate x, y, z di uno dei suoi otto angoli o dal suo centro. Il termine è usato nelle rappresentazioni tridimensionali

Lo slicing, come già ribadito, è la suddivisione del modello matematico, ossia il file STL che già risulta in parte degradato dalla conversione dal formato proprio del CAD all’STL, in “fette” orientate orizzontalmente rispetto alla disposizione che si è fatta dell’oggetto all’interno del volume di lavoro nella macchina. Data la particolare metodologia di lavorazione, la superficie finale del pezzo presenterà un aspetto a gradini. È evidente che a differenti spessori delle slice corrisponderanno differenti risultati finali, in particolare per le superfici curve. L’ideale sarebbe di disporre spessori infinitesimali e macchine capaci di stampare tali slice in modo velocissimo.

Per macchine a spessore di slice costante, dette slice uniformi, il problema non si pone più di tanto dato che il campo d’intervento dell’operatore è relegato alla sola scelta dell’orientazione del pezzo sulla tavola di lavoro. Discorso differente nel caso di sistemi a slice adattative; infatti, appositi software si occupano di modulare l’altezza delle slice in base alla curvatura del pezzo, per cui si avranno slice più spesse di fronte a superfici a elevato raggio di curvatura e più sottili nelle zone a curvatura elevata. Il risultato finale è quello di avere una superficie a gradini, effetto denominato staircase (letteralmente: scalinata, gradinata).

Problematiche di contenimento

Un altro importante inconveniente cui si può incorrere è il fatto che il prototipo può contenere o meno la superficie nominale. Se il profilo nominale si trova all’interno del prototipo, con una successiva figura di finitura, nel caso non siano rispettate le tolleranze indicate, il prototipo può essere accettato. Se il profilo nominale è all’esterno del profilo, se le tolleranze lo permettono, il prototipo può essere considerato buono.

Problematiche d’interfacciamento

Sono le problematiche che si riscontrano durante il passaggio dati dal CAD alla macchina. C’è da dire che oggi i più diffusi CAD hanno integrati moduli di esportazione, per cui i problemi citati nel paragrafo “Problematiche di generazione del STL” sono alquanto ridotti anche se in alcune occasioni possono riscontrarsi.

Ottimizzazione della fase di stampa

La scelta di un’orientazione piuttosto che un’altra permette di avere risultati differenti. Ottimizzare la fase di stampa consiste nello scegliere la corretta orientazione per tutti i corpi messi sulla tavola di lavoro; infatti, quando si tratta di disporre un solo pezzo questa risulta abbastanza facile, poiché si deve tenere conto di ciò che può succedere al singolo pezzo.

Cambiare l’angolo che una superficie forma con la base di lavoro aumenta o diminuisce la rugosità a causa dell’aumentare dell’effetto staircase. Quando invece si devono disporre più pezzi, oltre a tenere sotto controllo quanto appena esposto, si deve cercare di ridurre il più possibile il tempo di lavorazione.

I tempi di lavorazione si riducono in modo diverso a secondo della macchina impiegata. Una disposizione con i pezzi lungo l’asse y, ha un tempo di costruzione molto superiore a quello per realizzare gli stessi pezzi disposti lungo l’asse x della macchina.

Le linee guida che si possono delineare per la disposizione dei pezzi sono le seguenti:

  • Valutare preventivamente l’orientazione ottimale e tenere presenti le disposizioni possibili, compatibilmente con le specifiche imposte dal committente.
  • Tra le orientazioni ammissibili, scegliere quelle che presentano altezza inferiore.
  • Disporre sulla tray (tavola di appoggio) pezzi che presentano altezza il più possibile omogenea
  • Cercare di ricoprire la maggior superficie possibile della tray, con il criterio precedentemente esposto, al fine di ridurre le passate per completare la slice.

Le tecniche RP

Dalla prima prototipatrice di Charles W. Hull basata sulla tecnica SLA-1 si sono sviluppate molte altre tecniche la cui differenza sostanziale consiste nell’avere oggetti con caratteristiche meccaniche che si avvicinano sempre più alla produzione di serie. Vediamo adesso qualcuna di queste tecniche.

SLA (StereoLitographic Apparatus)

CAD_CAM

1) Sviluppo del modello con CAD

2) Elaborazione CAM per tradurre il modello in slice

3) Liquido che polimerizza (passa allo stato solido) in presenza di luce laser

4) Meccanica che, guidata dal computer, abbassa la tavola di appoggio (tray) e quindi il prototipo in costruzione realizzando in successione gli slice (“le fette”) superiori

5) Il generatore di luce laser che viene guidato dal computer per generare, per polimerizzazione (rendere solido il liquido), il prototipo strato dopo strato

La stereolitografia è stata la prima tecnica messa a punto. Si basa sulla polimerizzazione di un liquido per effetto di un laser. Nella prima fase si predispone il posizionamento finale del pezzo da realizzare su workstation ed eventualmente si generano i supporti. Successivamente il laser, focalizzato sul piano di lavoro mediante sistemi ottici, provvede a polimerizzare la prima sezione del prototipo. Successivamente il piano si abbassa e il procedimento prosegue con la polimerizzazione dello strato successivo.

Struttura a nido d’ape

Per ridurre il tempo di costruzione il laser polimerizza solo i contorni esterni delle superfici e le collega con una struttura a nido d’ape per cui alla fine della costruzione il pezzo è esposto a raggi UV mediante apposite lampade per un tempo sufficiente alla completa polimerizzazione.

La tecnica PolyJET

Il processo pratico si basa sulla deposizione di strati liquidi di fotopolimeri sensibili ai raggi ultra violetti e quasi in contemporanea due potenti lampade UV provvedono al loro indurimento. Più precisamente una serie di pompe trasportano due resine, quella che serve per realizzare il modello e quella che serve come supporto, dalle cartucce ai serbatoi della testina. La testina provvede a deporre in modo appropriato le resine. In particolare la resina “modello” è depositata dove c’è il volume del prototipo, invece quella supporto si utilizza per riempire le cavità o per sorreggere pareti inclinate di un angolo maggiore di 88° (gradi sessagesimali) con la linea dell’orizzonte (lato oggetto).

Deposta la slice, che presenta spessore di 16 μm, viene esposta a radiazione UV per mezzo delle lampade UV poste ai lati della testina e solidali con essa. A questo punto il piano si abbassa della quantità necessaria e il procedimento si ripete.

Questa tecnica ha la caratteristica di ottenere delle superfici la cui rugosità varia dai 2-3 µm ai circa 15 µm, con delle risoluzioni molto spinte.

 

Multi Jet Modeling (MJM)

Questo metodo è quanto di più simile ci sia a una stampante a getto di inchiostro. Nella testina è presente una resina termoplastica che viene disposta sulla tavola di lavoro a creare la slice. Successivamente si abbassa la tray e la resina aderisce alla slice precedente.

 

Drop on Demand (DOD)

Questo metodo è simile al precedente, il materiale del modello e quello del supporto sono depositati in sequenza e poi si passa alla slice successiva fino alla fine. Il post trattamento consiste nell’eliminare il materiale di supporto.

(Selective) Laser Sintering

La sinterizzazione laser, una volta chiamata anche SLS (Sinterizzazione Laser Selettiva), fa impiego di polveri, termoplastiche, metalliche o silicee, e come dice il nome, fa uso di un laser per sinterizzare i materiali impiegati per la costruzione del prototipo. Inizialmente viene steso un sottile strato di polvere da un apposito apparato e il laser provvede alla sinterizzazione ove necessario. La tavola si abbassa della quantità voluta, si stende un altro strato di polvere e il tutto si ripete. Il vantaggio sta nel fatto che si possono utilizzare diverse tipologie di polveri e non c’è bisogno di prevedere dei supporti dato che è la polvere non sinterizzata che provvede a sostenere i piani superiori. Alla fine del processo il pezzo deve essere liberato dalla polvere in eccesso, operazione non molto complessa, e nel caso di polveri metalliche e ceramiche, subiscono anche un trattamento termico per migliorarne le caratteristiche. Per tutti gli altri materiali si possono prevedere altri tipi di trattamento a secondo delle esigenze.

 

Modellazione a deposizone fusa (FDM)

La modellazione a deposizone fusa (Fused Deposition Modelling, FDM) fa uso di fili e barrette di materiale termoplastico, deposto su un vassoio da una testina capace di muoversi lungo 3 assi x, y e z. Il processo è tutto automatico, così come l’eventuale generazione dei supporti, spesso creati a nido d’ape per alleggerire la struttura. Alla fine della lavorazione il prototipo non richiede di ulteriori trattamenti fuorché l’eliminazione dei supporti ove non necessari.

Produzione di oggetti laminati (LOM)

La produzione di oggetti laminati (Laminated Object Manufacturing, LOM) o laminazione di fogli di carta, impiega fogli di carta speciale tagliata secondo la slice voluta e incollata alla precedente. Il suo vantaggio è quello di poter avere dimensioni relativamente elevate per il volume di lavoro. Il supporto è costituito dalla carta in eccesso e il post trattamento è molto delicato in quanto bisogna estrarre il materiale in eccesso con attrezzi tipici della lavorazione del legno. In più, avendo il prototipo un aspetto simile al compensato, bisogna fare una finitura con carta abrasiva per evitare rischi di distacco degli strati e sicuramente un trattamento di impermeabilizzazione per prevenire l’assorbimento di umidità.

Stampa 3D

Questa lavorazione è simile alla SLS, ma le polveri anziché essere sinterizzate vengono mantenute insieme da un collante spruzzato con una testina simile a quelle presenti nelle stampanti a getto d’inchiostro. Il collante viene rapidamente asciugato e il prototipo ottenuto va delicatamente estratto per evitare sfaldamenti e sottoposto a un trattamento termico per migliorarne le caratteristiche.

Sul mercato oggi esistono stampanti 3D “fai da te” che utilizzano una varietà di materiali e che permettono di creare la maggior parte di oggetti 3D, come ad esempio la stampante Fabber prodotta dal progetto open source Fab@Home[3] o il progetto RepRap.

Fusione laser selettiva (SLM)

Anche la fusione laser selettiva (Selective Laser Melting, SLM) è del tutto simile alla sinterizzazione laser selettiva, ma se ne differenzia per l’impiego di polveri metalliche integrali, ossia senza l’ausilio di bassi fondenti. Ne deriva che anche il laser è più potente e alla fine si ha un oggetto del tutto simile alla produzione di serie, che non richiede particolari finiture superficiali e che può essere sottoposto tranquillamente a lavorazioni tradizionali. Allo scopo di prevenire l’ossidazione dei metalli nella camera di lavoro si ricrea un’atmosfera inerte.

Electron Beam Melting (fusione da fascio elettronico)

È del tutto simile alla precedente, solo che per permettere una corretta focalizzazione del fascio elettronico sul piano di lavoro si deve creare il vuoto nella camera di lavoro, il che previene anche la formazione di ossidi metallici nelle polveri.

Il fascio elettronico, potendo concentrare una potenza di spot superiore rispetto al laser, può fondere polveri metalliche alto fondenti quali il titanio.

Una particolare applicazione fattibile con questa tecnica è la produzione di protesi biomediche in titanio, mediante l’utilizzo di polveri di titanio ad alta compatibilità biomedica.

Laser engineered net shaping (LENS)

È un processo di formatura con cui si ottengono componenti metallici depositando fili o polvere metallici in una poltiglia di metallo generata dall’azione di un fascio laser di elevata potenza sulla superficie superiore di un substrato metallico preventivamente depositato su una piattaforma.

 


 

Bibliografia

  • F. Bernardo – “Prototipazione Rapida e Progettazione Aeronautica: dall’analisi dei parametri operativi alla verifica sperimentale del prototipo” – Tesi di Laurea – 2006 – Università degli Studi di Salerno
  • Galardi L., Truono F. – “La prototipazione rapida come strumento di benchmarking” – Tesi di laurea – 2003 – Università degli Studi di Salerno
  • Slide dell’università degli Studi di Lecce, Prof. Carola Esposito Corcione

 

Materiali innovativi: Il Groffee.

foto

Nuovo materiale scoperto nella categoria dei materiali innovativi: il Groffee.

Il Groffee non è altro che una miscela di carta non stampata, fondi di caffè e cera d’api. Nasce quindi dall’unione di un materiale composito, uno organico di scarto ed un legante di origine naturale.

Questo materiale nasce principalmente dallo studio dettagliato di uno dei suoi ingredienti principali, i fondi di caffè: nonostante molti di noi ormai siano passati dall’uso della tradizionale moka da caffè alla macchinetta con cialde, la quantità di caffè non utilizzata rimane la stessa, se non di più. Molti non sanno che i fondi di caffè posseggono svariate qualità, tra cui:

– ottimo concimante per il terreno, ricco di azoto, calcio, magnesio e potassio;

– fertilizzanti per varie tipologie di piante;

– repellente per le lumache;

– completamente biodegradabile;

– repellente per gatti e cani;

Posando la nostra attenzione su queste caratteristiche nasce l’idea di  creare dei vasi in materiale biodegradabile che sostituiscano i contenitori di plastica per le piante.

In questo modo si eviterebbe lo shock che la pianta subisce a seguito della rinvasatura o della messa in terra, e il caffè contenuto nel materiale sarebbe di aiuto alla pianta durante buona parte della crescita. La sua biodegradabilità, inoltre, permetterebbe al vaso di uniformarsi al terreno circostante, senza alterarlo, evitando cosi la dispersione di vasi di plastica gettati poi nella spazzatura. Inoltre la scelta di utilizzare la cera d’api non è casuale: i primi esperimenti sono stati fatti utilizzando lo zucchero, che risultò non  sufficientemente “colloso” da unire insieme tutti e gli altri ingredienti. La cera, utilizzata per sostituirlo, conferisce un’aspetto più solido e resistente al vaso, dando la possibilità di aprire dei fori in qualsiasi punto del vaso per la fuoriuscita dell’acqua in eccesso e la traspirazione della pianta.

550x350-true-Tratta_da_Universo_Ecologico

INGREDIENTI

– Fondi di Caffè (2/4);                         – Carta di bamboo (o carta non stampata) (1/4);

– Cera d’Api non trattata (1/4);                – Forma / Vaso

IMG_0170

 

FASI DI PREPARAZIONE DEL GROFFEE

FASE 1

Disponendo di cialde per la macchinetta del caffè, le si apre e si preleva il contenuto.

Nel nostro caso le scelta delle cialde di marca Nespresso non è stata casuale: questa casa produttrice, infatti, offre la possibilità ai propri clienti di consegnare le cialde utilizzate nel punto vendita più vicino, così che possano essere lavate e riutilizzate sempre come cialde del caffè, invece che essere gettate nella spazzatura.

Copia di IMG_0107

FASE 2

In una ciotola si riducono in pezzi di piccole dimensioni i fogli di carta e li si mescola con i fondi di caffè. La quantità di acqua residua contenuta nei fondi di caffè aiuterà la carta ad unirsi ad essi, creando un unico composto.

IMG_0108 IMG_0111

FASE 3

Dopo aver fatto sciogliere in padella la cera d’api, senza portarla ad ebollizione , la si mescola al composto precedentemente ottenuto (l’aggiunta di questo materiale renderà il vaso impermeabile e più resistente).

IMG_0129 IMG_0112

FASE 4

A questo punto si può scegliere un vaso di una qualsiasi dimensione e forma, che fungerà da base per il calco. Si applica il Groffee lungo i lati e sulla base del vaso, pressandolo e compattandolo adeguatamente, e lo si lascia asciugare all’aria. Eventualmente, per essere sicuri che il calco abbia l’esatta forma del vaso originale, si può utilizzare un secondo vaso, identico al primo, posizionandolo all’interno di questo, di modo che il materiale sia bene fermo da entrambi i lati (utilizzando tra lo strato di materiale e il secondo vaso una pellicola trasparente si limitano al minimo le possibilità di rottura del Groffee solidificato).

IMG_0114 IMG_0126

Si otterrà così un vero e proprio “contenitore” al 100% biodegradabile e al 100% funzionale per la pianta che vi verrà inserita.

Espandendo la produzione di questo materiale su larga scala, sarà inoltre possibile riutilizzare anche e soprattutto i fondi di caffè prodotti nei bar e nei ristoranti, che rappresentano il maggior luogo di spreco di questo materiale.

IMG_0160 IMG_0158

 

 

FABRIC ATTRACTIVE il /*tessuto elettromagnetico

RICERCA | ELETTROMAGNETISMO

In fisica , in particolare nel magnetismo, il campo magnetico è un campo vettoriale solenoidale generato nello spazio dal moto di una carica elettrica o da un campo elettrico variabile nel tempo. Insieme al campo elettrico esso costituisce il campo elettromagnetico, responsabile dell’interazione elettromagnetica.

Nel video è presente la descrizione per ricreare un elettro-magnete casalingo.

IPOTESI DI PROGETTO | Tessuto attraente

Tramite l’osservazione dell’esperimento e con la consapevolezza che i metalli trattati possono essere ridotti in sezioni piccolissime (pari a pochi decimi di millimetro), ho provato a ipotizzare applicazioni dello stesso nell’ambito dei tessuti, provando a realizzare un tessuto attrattivo.

Cosa e/ perchè un TESSUTO ATTRAENTE?

Prendendo spunto dalle ricerche degli esercizi precedenti, l’intento è quello di creare un macro-campione di un tessuto elettromagnetico.

Questo tessuto elettromagnetico sarà composto da:
-un filo in materiale ferromagnetico avvolto da un altro filo in rame;
-un interruttore;
-4 pila da 5 volt.

Schermata 2014/05/04 alle 11.04.01

L’esercizio consiste nella possibilità di creare una rete (o texture) formata dai fili elettromagnetici ricoperti di rame. Questi fili sono collegati alla corrente pari a 5 volt tramite interruttore.
Nel momento in cui il meccanismo verrà attivato si darà vita a un campo elettromagnetico, facendo diventare magnetica la nostra struttura. Si darà così una vita a un tessuto elettromagnetico.

Schermata 2014/05/04 alle 11.04.31 Schermata 2014/05/04 alle 11.03.31

In cosa potrà essere utilizzato?

Può essere utilizzato in diversi ambiti tra i quali:
-abbigliamento;
-lavoro,
-sport;
-medicina;
-cucina.

Il fatto di avere una chiusura magnetica instrinseca nel tessuto permette di avere spazi ridotti e meno invasivi per quanto riguarda la chiusura stessa, e quindi particolarmente adatta nel campo dell’abbigliamento.

Il tessuto è utilizzabile in tutti quei lavori di precisione aventi piccoli componenti di pezzi ferromagnetici (viti, piccole saldature, protesi dentarie, ecc) e per il modellismo.

 

 

 

 

 

 

 

 

 

La plastica: tipologie e tecnologie.

Un po’ di storia sulle materie plastiche.

                        ImmagineImmagine

Nel 1920 H. Standinger teorizza che la plastica è formata da polimeri costituiti di macromolecole.

Tra il 1920 e 1930 si formulano il Cellophane, ossia un film trasparente, il cloruro di polivinile PVC, materiale utilizzato per creare fili elettrici e tubi; segue la creazione del Nylon per le fibre tessili, le resine ureiche per la produzione di casalinghi, il Perpex metacrilato polimerizzato per lenti, occhiali e macchine fotografiche e il Polistirolo che è una resina polistirenica ad uso espanso per coibentazione di case, aerei e frigo.

Nel 1950 si procede con altre creazioni come la fibra tessile, utilizzata per tessuti elastici e calze da donna, denominata Lycra; il politetrafluoretene PTFE noto con il nome di Teflon, con il quale si attuano il rivestimento anti-aderente delle padelle.

Nel 1953 viene scoperto da K. Ziegler il Polietilene PE che ha ricevuto il Premio Nobel; segue nel 1954 l’assegnazione di un altro Premio Nobel a G. Natta per la scoperta del Polipropilene PP. In seguito, nel 1970 nascono i tecnopolimeri, speciali formazioni di plastiche con caratteristiche meccaniche e fisiche di altissimo livello.

La materia prima.  

Per quanto riguarda le materie plastiche, si considera ora la loro composizione, costituita da polimeri, macromolecole di sostanze organiche a elevato perso molecolare. I polimeri derivano da avviluppamenti chimici di un gran numero di piccole molecole di monomero del medesimo tipo.

Le sostanze naturali da cui derivano le materie plastiche, dopo apportuni processi, sono:

  • cellulosa (legno)
  • oli vegetali
  • mais e semi di soia
  • cereali

La maggior parte delle materie plastiche oggigiorno vengono prodotte da:

  • carbone
  • gas metano
  • petrolio

I polimeri. 

La trasformazione della materia prima avviene attraverso la polimerizzazione, che è il processo che permette di trasformare le materie prime in materie plastiche. Le materie prime vengono polimerizzate attraverso differenti procedimenti per ottenere materie plastiche sotto forma di granuli, pastiglie, polveri o liquidi. Le possibili polimerizzazioni sono: in massa, in soluzione, in sospensione e/o in emulsione.

                                          Immagine

Le materie plastiche di base prodotte dalla polimerizzazione sono commercializzate sotto molte forme a seconda dell’impiego successivo come :

  • granuli, polveri per stampaggio di oggetti
  • resine liquide, da accoppiare a cemento, fibra di vetro, fibra di carbonio
  • vernici
  • adesivi
  • film

I campi di applicazione dei polimeri sono svariati.

In edilizia li ritroviamo nelle finestre in PVC, tubi per l’impianto idraulico PVC, fili elettrici PVC, canaline elettriche PVC, materiali espansi per le casseforme PS, calcestruzzo con resine sintetiche, fogli per impermeabilizzare bacini, strade, fondazioni PVC, lastre per isolamento termico PE PS PUR.

                                   Immagine            Immagine

In packaging utilizzati per film PE- LLD, contenitori PS, PC, in bottiglie PET.

                                                                             Immagine

Nei mezzi di trasporto come spoiler, paraurti, parafanghi, cofani, portelloni PUR ( poliuretani ) RIM ( poliuretano rigido ), fari PC, camper, interni autobus, barche SMC, fibra di vetro impregnata con resina, parte di aerei, fibre di carbonio impregnate con resina.

Attualmente le materie plastiche costituiscono in media il 10% del peso di un auto ( 70-150kg) ma la percentuale è in aumento. Il 65% degli aerei di linea è costituito da materiali compositi rinforzati.

In elettronica si usano nei materiali isolanti Termoindurenti classici, PA (Nylon), PC (policarbonato), carrozzerie di computer, oggetti elettronici in genere, cassette VHS ABS (acrilonitrile-butadiene-stirene), PS (polistirene), PC (policarbonato).

In casa nei mobili PP (polipropilene), PU (poliuretano) lampade PC (policarbonato), PMMA (polimetilmetacrilato).

Immagine               Immagine                Immagine

Produzione e Consumi. 

Si considera ora alcuni dati Economici e Produzione in Europa.

Nel 2003 nel settore della plastica sono state impiegate 1.000.000 persone e sono state prodotte materie plastiche per circa 29 miliardi di euro e prodotte macchine per la lavorazione delle plastiche per 9 miliardi di euro.

Per quanto riguarda i consumi nel 2002 sono stati consumati 96,6 Kg di plastica procapite e nel 2003 Kg. 98 procapite.

Inoltre nel settore del Packaging  nell’anno 2003 14 milioni di tonnellate di materiale, nel settore auto 3 milioni di tonnellate.

Le materie plastiche sono suddivise in tre grandi famiglie:

  • materiali termoplastici
  • materiali plastici termoindurenti
  • materiali plastici elastomerici (elastomeri)

I materiali termoplastici rammolliscono ripetutamente con il calore sino a diventare scorrevoli e solidificano per raffreddamento, In seguito ad un processo di trasformazione (stampaggio) essi assumono cambiamenti di stato re ersibili.

Gli scarti di lavorazione derivanti dallo stampaggio possono essere rigenerati e possono essere riutilizzati.

Possono essere termoformati (vasche da bagno o le cassette della frutta) e saldati.

Altri materiali plastici sono termoindurenti derivano da prodotti macromolecolari che, reagendo fra di loro, formano macromolecole strettamente reticolate dal lato chimico.

Non sono reversibili per cui, una volta stampati e avvenuta la reazione chimica non sono più utilizzabili se non come carica (particelle aggiunte alle plastiche per modificare le caratteristiche meccaniche).

Non sono termoformabili e saldabili.

Ora considerando i materiali plastici elastomerici, (elatomeri) possiamo specificare che sono materiali che a temperatura ambiente hanno un comportamento gommoelastico, e che se sollecitati a trazione o co,pressione di deformano, e che una volta eliminata la forza ritornano all’entità originale ( come gli stivali di gomma, le suole di ulcune scrpe, i tappi non di sughero per il vino, o la parte plastica delle chiavi delle macchine).

Si tocca ora il campo degli agenti ausiliari dei quali molti manufatti stampati hanno bisogno per migliorare la resistenza al fuoco, la sicurezza, l’igiene nel settore alimentare, le caratteristiche mecccaniche, la stampabilità.

Il processo di produzione dei semilavorati e dei manufatti.

                                                   Immagine

  • coloranti: pigmenti organici ed inorganiciinsolubili che conferiscono il colore alla palstica, sono chiamati masterbatch
  • cariche: sono polveri (farine di legno), fibre (legno, vetro allumimio, carbonio, araldite),

            sferette di vetro, servono a risparmiare materiale, migliorare la lavorabilità e le caratteristi che meccaniche

  • agenti scivolanti e distaccanti: abbassano la viscosità delle masse plastiche, facilitano il distacco dagli stampi
  • agenti stabilizzanti: diminuiscono il degrado delle plastiche agli agenti atmosferici, ai raggi UV, all’ossidazione
  • agenti antistatici: impediscono alla plastica di attirare la polvere per effetto dell’eletricità statica
  • ritardi di fiamma: diminuiscono l’infiammabilità delle plastiche
  • agenti flessibilizzanti: migliorano la flessibilità delle plastiche fragili
  • agenti plastificanti : regolano la tenacità delle materie plastiche rigide

Seguono le tecnologie di lavorazione del materiale plastico.

Miscelazione.

I materiali termoplastici devono essere miscelati con agenti ausiliari. Alcuni esempi di apparecchi per la miscelazione della plastica con gli agenti ausiliari sono la dosatrice gravimetrica e dosatrice volumetrica.

Plastificazione dei polimeri. 

                                            Immagine

Le premiscele di granuli o polveri ed additivi vengono fuse e omogeneizzate mediante estrusori-omogeneizzatori. La massa fusa viene poi lavorata a caldo o a freddo.

Per quanto riguarda la granulazione a freddo, una volta estruso il materiale ed omogeneizzato esce dalla matrice e viene raffreddato in un bagno d’acqua ed essiccato prima di passare alla granulatrice, una taglierina che riduce l’estruso filare i granuli cilindrici.

Con la granulazione a caldo invece, la massa fusa ed omogeneizzata, viene tagliata in granuli appena esce dalla matrice di estrusione. I granuli vengono raffreddati in acqua subito dopo il taglio. In questo caso i granuli hanno forma sferica o lenticolare.

Lo stampo.

                                            Immagine

                                            ImmagineImmagine

Lo stampo è composto di una matrice, detta anche femmina e di un punzone, detto anche maschio. L’unione dei due pezzi genera la forma da dare all’oggetto da stampare.

Può avvenire uno stampo a iniezione dove la vite per iniezione introduce la materia plastica nello stampo, mentre il pistone idraulico, attraverso un meccanismo a ginocchio, tiene lo stampo chiuso: infatti l’iniezione della plastica avviene ad alta pressione e tende ad aprire lo stampo.

                                              Immagine

Lo stampo ad iniezione avviene in diverse fasi; nella prima fase vengono introdotti i granuli e gli agenti. La vite incomincia a girare miscelando i granuli, mentre le resistenze riscaldano il materiale.

                                                                          Immagine

Segue la seconda fase in cui la vite avanza e spinge la massa fusa nello stampo,quindi la vite senza fine spinge la massa fusa nello stampo attraverso il canale d’iniezione ed inizia lo riempimento dello stampo. Per l’elevata spinta, la macchina tiene chiuso lo stampo attraverso un pistone idraulico. Lo stampo è opportunatamente riscaldato per permettere un buon flusso della plastica sino a riempire tutta la figura. Si arriva così alla terza fase in cui la vite senza fine esegue una post compressione a pressione più bassa per compensare il ritiro ( la plastica fusa, una volta solidificata tende a ritirarsi, cioè a diminuire il suo volume): a questo punto la vite sospende la spinta e il pezzo si raffredda per qualche istante nello stampo in modo che la plastica si solidifichi completamente per permettere al pezzo stampato di uscire dallo stampo senza deformarsi. Con la quarta ed ultima fase, l’iniezione è completata, il manufatto si è raffreddato ed è diventato solido e così è possibile aprire lo stampo per l’estrazione del pezzo stampato.

                                                     Immagine

                                                     Immagine

                                                    Immagine

Estrusione.

                                                Immagine

In questo processo la massa fusa viene spinta dalla vite attraverso una matrice d’estrusione. Attraverso il processo di estrusione possono essere estrusi differenti profili. Il più interessante è il profilo cavo per cui l’estruso può essere svuotato creando un profilo resistente e leggero. Questa tecnica permette di estrudere profili a sezione cava utilizzando l’aria per svuotare il profilo. La linea completa di estrusione è composta dall’estrusione, da un’unità di classificazione granulometrica, da un’unità di raffreddamento per poi passare al taglio. I profilati di norma sono tagliati a 6 m per problemi di trasporto sui camion. I profilati sono di tre tipi, ossia profilati cavi, profilati aperti e profilati a barra piena.

Estrusione di film soffiato.

                                                          Immagine

Questo tipo di estrusione consente di produrre ad esempio i sacchi per rifiuti di colore nero. La linea di estrusione di film soffiato è costituita da un estrusore con matrice ad anello, un anello di raffreddamento ad aria, un dispositivo per il trascinamento del film e i rulli di avvolgimento del prodotto finale. Il tubo soffiato viene stirato sino a ¾ volte il diametro della matrice ad anello.

Estrusione di film piatto.

L’apparecchiatura per un film piatto contiene un estrusone con matrice piatta, rulli refrigeranti, dispositivo di taglio e unità di avvolgimento. La massa fusa che esce dalla matrice è pressata contro il primo rullo refrigerante mediante aria calda. Il raffreddamento è seguito dal taglio e dall’avvolgimento.

Estrusione su cavo o tondino metallico.

Il cavo di rame, acciaio o alluminio è trainato attraverso una matrice rotonda rotante e ricoperto di plastica. Dopo il raffreddamento viene avvolto il bobine per il trasporto. Con questa tecnica si producono cavi elettrici, reti per recinzioni, cavi per stendere la biancheria e tubi metallici.

Estrusione/soffiaggio.

                                          Immagine

Questo processo consente di produrre oggetti cavi come bottiglie e flaconi. L’unità è composta da due sezioni: la prima è un estrusore che genera il parison, uno sbozzato di forma cilindrica cavo all’interno.

                                               Immagine

Nella seconda sezione il parison passa nello stampo (nell’esempio di una bottiglia). Lo stampo della bottiglia è aperto per consentire al parison di entrare senza interferenza in quanto è allo stato plastico. Entrato completamente il parison, lo stampo della bottiglia si chiude bloccando la parte del parison che va a formare il collo e il sistema di chiusura della bottiglia ( chiusura a vite). Dopodichè dal collo della bottiglia viene immessa aria compressa che deforma il parison, facendolo aderire alle pareti dello stampo, prendendo la forma del medesimo.

                                          Immagine

La bottiglia è formata. Lo stampo si apre per permettere a due taglierine di asportare le parti di plastica in eccesso dal collo della bottiglia e per staccarla dal parison. Dopodichè la bottiglia esce dallo stampo.

                                                  Immagine

Questo processo avviene in due fasi. Nella prima fase viene stampato con la tecnologia dell’iniezione uno sbozzato, un corpo cilindrico della forma di una provetta da laboratorio, che ha già la filettatura per avvitare il tappo. Lo stampaggio ad iniezione dà la sicurezza di avere spessori costanti ed alta precisione nella stampa della filettatura. Per essere rilavorato lo sbozzato viene sottoposto a riscaldamento per rendere deformabile la plastica. Nella seconda fase lo sbozzato opportunamente riscaldato, viene inserito nello stampo con la figura da realizzare. Immettendo aria compressa all’interno dello sbozzato, questo si deforma fino ad assumere la forma dello stampo. Terminata la formatura, lo stampo si apre e viene estratta la bottiglia finita.

Con il processo di produzione monofase, la macchina plurifunzione è in grado di produrre bottiglie finite partendo dai granuli di plastica. Una pressa stampa gli sbozzati che poi vengono spostati nella stazione di preriscaldamento; nella stazione successiva gli sbozzati vengono trasformati nella forma definitiva e quindi avviati al riempimento. Queste macchine sono situate direttamente nelle fabbriche di imbottigliamento ( acqua minerale, cosmetici, detersivi, oli) per risparmiare il trasporto di oggetti vuoti e voluminosi a basso valore.

Per quanto riguarda il processo di produzione bifase invece, gli sbozzati sono prodotti da aziende specializzate. Gli sbozzati, essendo meno ingombranti del prodotto finale, sono trasportati nelle aziende di imbottigliamento che hanno una macchina che soffia il prodotto finito da avviare all’imbottigliamento.

Iniezione/stiro/soffiaggio.

Questo processo avviene in tre fasi; nella prima fase viene stampato con la tecnologia dell’iniezione uno sbozzato o parison, un corpo cilindrico della forma di una provetta da laboratorio, che ha già la filettatura per avvitare il tappo. Lo stampaggio ad iniezione da la sicurezza di avere spessori costanti ed alta precisione nella stampata della filettatura. Per essere rilavorato lo sbozzato viene sottoposto a riscaldamento per rendere deformabile la plastica.

Nella seconda fase lo sbozzato passa in un altro stampo dove, attraverso la pre-soffiatura, viene trasformato un una preforma. La preforma è una forma cava di dimensione intermedia rispetto alla forma finale. Nella terza fase la preforma, opportunamente riscaldata, viene introdotta nello stampo definitivo per il soffiaggio. Questa tecnologia viene utilizzata quando si devono stampare contenitori di una certa dimensione e si vuole controllare la dilatazione e quindi lo spessore della pareti dello stampo.

Termoformatura.

Questo processo prevede lo stampaggio di una lastra di materia plastica riscaldata. La astra, allo stato plastico, viene forzata sulle pareti dello stampo creando depressione attraverso una macchina per il vuoto. La lastra è ottenuta da un premilastra che, tenendo fermi i bordi, obbliga la medesima a deformarsi per assumere la forma dello stampo. Lo stampo ha una serie di fori per permettere all’aria aspirata dalla macchina del vuoto di passare. La lastra viene riscaldata da una piastra che sovrasta lo stampo. Terminato il riscaldamento, la macchina del vuoto aspira aria e costringe l lastra a deformarsi e a prendere la forma dello stampo. Il manufatto stampato deve poi essere rifilato ai bordi.

Trasformatura a stampo positivo.

               ImmagineImmagine

              Immagine

Questo processo inverte il concetto della trasformatura classica: invece di aspirare la lastra sullo stampo, in questo caso è lo stampo che sale ed aderisce alla lastra, la quale è stata opportunamente riscaldata e deformata. Nella prima fase la lastra viene riscaldata dal riscaldatore sovrastante.

Nella seconda fase viene insufflata aria attraverso i buchi dello stampo in modo da trasformare la lastra. Nella terza fase la tavola stampo sale e lo stampo si posiziona della deformazione della lastra. Nella quarta fase si inverte il flusso d’aria compressa: si crea il cosiddetto “effetto vuoto” per far aderire la lastra allo stampo.

Stampaggio rotazione.

ImmagineImmagine

E’ una tecnologia che permette di stampare oggetti vuoti all’interno, come ad esempio un pallone da calcio che è vuoto all’interno e non sarebbe stampabile con qualsiasi altra tecnologia. Inoltre si possono stampare manufatti di grosse dimensioni con stampi in lamiera o vetroresina ( resina e fibre di vetro) di costo contenuto. E? Una tecnologia lenta e non richiede impianti sofisticati.  

Il processo avviene in quattro fasi. Nella prima fase viene introdotto nello stampo il materiale da stampare (PET,PP) in polvere. Nella seconda fase lo stampo, montato su un braccio che ruota contemporaneamente secondo tre assi, viene posto in un forno. La temperatura scioglie la polvere portandola allo stato liquido: questa incomincia a scivolare su tutte le pareti dello stampo disponendosi uniformemente su di esse. Nella terza fase, quando il materiale ha ricoperto tutte le pareti dello stampo, questo viene tolto dal forno continuando a ruotare. Nella quarta fase, quando il pezzo stampato è completamente raffreddato, viene estratto dallo stampo. Nell’immagine si nota un impianto per lo stampaggio rotazionale a ciclo continuo. Mentre un braccio entra nel forno, l’altro ne esce e passa nella stazione di raffreddamento mentre un terzo porta lo stampo pronto per essere caricato di polvere.

Nelle immagini sottostanti si nota che sul braccio rotante si possono montare o un solo stampo se questo è di notevoli dimensioni, oppure fino a quattro stampi più piccoli, accelerando noteolmente i tempi di produzione.

Stampaggio per colata del Polluretano PUR.

Il PUR può essere stampato allo stato flessibile (imbottitura in genere) o rigido (carrozzerie). Inoltre lo si può stampare a bassa o ad alta pressione. Nel processo a bassa pressione, la testa di miscelazione (in rosso) viene accostata allo stampo per colorare il PUR. Il PUR nasce dalla miscela di resine termoindurenti denominate Isocinato e Poliolo.

Per colare il Poliuretano si utilizzano macchine che hanno un braccio molle che sostiene la testa di miscelazione: così è possibile iniettare il PUR in più stampi contemporaneamente muovendo solo la testa. Il PUR flessibile può essere stampato anche “autopellante o integrale”: il materiale iniettato crea una pelle, una finitura ad effetto pelle come nei braccioli delle portiere delle auto, nei volanti o delle sedie.

Stampaggio per colata del Poliuretano RIM (Reaction Injection Moduling)

Questo processo permette di utilizzare miscele liquide per un miglior riempimento dello stampo con pressione di riempimento bassa e quindi utilizzano stampi in alluminio. Si possono ottenere pezzi di grosse dimensioni e di ottima finitura.

Stampaggio per compressione.

Questa tecnologia vine utilizzata per le resine termoindurenti e gli elastomeri. La resina viene introdotta nello stampo preriscaldato. Il punzone chiude lo stampo per cui la pressione e la temperatura provocano la liquefazione della resina. In uno o due minuti si ottiene la completa reticolazione della resina, dopodichè il pezzo è pronto per uscire dallo stampo. Successivamente il manufatto deve essere sbavato, ossia l’asportazione della resina in eccesso ai bordi.

Stampaggio ad espansione.

                                                                      Immagine

Questa tecnologia serve a produrre materiali che hanno la capacità di espandersi: ad esempio il polistirene ( polistirolo espanso). Vengono immessi in uno stampo di alluminio granuli con agenti schiumanti che rilasciano CO2 se riscaldati. Nello stampo viene immesso vapore a pressione 3 atm. I granuli si espandono anche 20 volte il loro volume iniziale sino a saturare lo stampo.

Calandratura.

Con questo procedimento si ottiene film di PVC partendo dalla resina. Passando fra i rulli la plastica viene gradatamente assottigliata sino a raggiungere lo spessore di 1,2 mm. I rulli possono anche goffrare il film imprimendo un disegno.

                                                                        Immagine

 

Materiale di supporto: slide Prof. Carola Esposito Corcione.

Il cartone ondulato. Articolo a cura di Francesca Taurino ( con aggiunte di Valentina Dedonatis).

IL CARTONE ONDULATO.

Immagine ImmagineImmagineImmagine

Un po’ di storia.

Il cartone ondulato è stato inventato e brevettato a metà dell’800, e ha tutt’ora una diffusione e un impiego impensabile. “Fatto di carta”, ma tutt’altro che fragile, il cartone ondulato, in costante evoluzione qualitativa sia nelle prestazioni che nei servizi offerti, è sempre stato e continua ad essere professionista nella nostra quotidianità.Il suo utilizzo è stato sostanzialmente quello dell’imballaggio.

Nella sua forma più semplice è costituito da due superfici di carta piana dette copertine che racchiudono una carta ondulata e che si legano tra loro con l’utilizzo di collanti naturali.

L’azione combinata delle copertine con l’onda interna conferisce rigidità e resistenza all’insieme e ne determina l’efficacia nel confezionamento e nel trasporto delle merci.

In Italia sono prodotti ogni anno circa 6 miliardi di m² di cartone che si trasformano in circa 11 miliardi di scatole.

Per cosa è nato l’imballaggio in cartone ondulato.

La funzione principale dell’imballo sono quella della protezione, conservazione, trasportabilità dei prodotti, nonché, in molti casi, la frammentazione in confezioni e dosi adatte alla distribuzione e alla vendita al dettaglio per il consumo familiare e individuale.

C’è però un’altra funzione, la cui importanza è aumentata enormemente negli ultimi decenni e continua a crescere sotto la spinta del marketing e  della pubblicità: è la funzione “immagine”, ovvero che illustra, che promuove, che fa vendere il prodotto.

Com’è fatto?

Le caratteristiche del cartone ondulato sono strettamente legate alle caratteristiche delle singole carte che lo compongono. In questo senso possiamo distinguere le carte in due macro categorie: le carte da copertina e le carte per ondulazione.

E’ un materiale che si caratterizza per due fattori:

  • Leggerezza;
  • Resistenza alla compressione;

Un’altra caratteristica che merita di essere evidenziata è quella della “fonoassorbenza”.

 Le limitazioni.

Ci sono però altrettanti fattori che ne limitano fortemente l’impiego, in particolare:

  • Difficoltà a utilizzare il cartone ondulato in condizioni di umidità elevata o quando sia richiesta la “lavabilità” dei prodotti realizzati (esistono comunque in commercio cartoni ondulati resistenti a umido, i quali hanno subito trattamenti particolari che ne migliorano notevolmente le prestazioni);
  • Impossibilità di utilizzare il cartone ondulato per impieghi che richiedano particolari prestazioni di “reazioni al fuoco” (ad esempio arredi per edifici pubblici).

Per questo motivo non esistono in commercio prodotti realizzati con carte già “trattate”, e il trattamento fatto in seguito, sul prodotto finito, presenta particolari difficoltà, proprio per la struttura stessa del cartone ondulato. Inoltre, un eventuale trattamento con vernici speciali comprometterebbe una delle principali caratteristiche, vale a dire la riciclabilità del materiale.

Le onde.

A seconda del numero di onde si parla di:

  • ONDA SEMPLICE: 2 copertine e 1 onda;
  • DOPPIA ONDA: 2 copertine, 2 onde e un foglio teso frapposto tra le due onde;
  • TRIPLA ONDA: 2 copertine, 3 onde e due fogli tesi frapposti tra le tre onde.
  • Esiste anche l’onda nuda, un cartone nel quale manca la copertina esterna e in cui l’ondulazione rimane scoperta; solitamente questo tipo di cartone viene utilizzato nel settore cartotecnico, accoppiato con una carta patinata.

L’evoluzione delle onde. 

  Immagine

Classificazioni varie.

Le onde, inoltre, sono classificabili a seconda della loro altezza e quindi, a titolo esemplificativo, si possono avere onde alte, onde medie, onde basse e micro onde.

Ulteriore classificazione è quella delle copertine in base al tipo di carta utilizzata, con particolare riferimento alla composizione e alle caratteristiche meccaniche della stessa. Si possono avere quindi carte Kraft, Liner e Test.

Anche le carte per ondulazione sono classificabili a seconda delle caratteristiche meccaniche; sono identificabili carte semichimiche (S o SS) e Medium (M) o Fluting (F).

Si possono avere cartoni ondulati costituiti con carte prodotte sia da materiale riciclato sia con carte in fibra vergine. Il cartone può quindi essere costituito dallo 0% al 100% di materiale riciclato.

 

Carte per copertine.

Kraft: carta prodotta utilizzando un’elevata percentuale di fibre vergini di conifera; tipicamente  l’80%

Liner – Test: 100% di massa derivante da recupero con prestazioni differenziate.

Carte per ondulazione.

Tipo S: carte prodotte utilizzando un’elevata percentuale di fibre vergini di latifoglie; tipicamente maggiore al 65%.

Uso semichimica Medium o Fluting: carte prodotte utilizzando il 100% di materiale derivante da recupero, con prestazioni differenziate.

 

Prove sul cartone ondulato.

Suddivise per tipologia e per grammatura le carte che compongono il cartone, possiamo identificare e misurare le diverse caratteristiche del cartone ondulato per meglio rispondere alle diverse esigenze di impiego:

  • Grammatura del cartone: esprime il peso del cartone al metro quadrato; non sarà altro che la somma delle grammature delle copertine, più la grammatura delle onde (il peso al metro quadrato dovrà essere maggiorato secondo un coefficiente di ondulazione che varierà in base allo spessore ed al passo dell’onda) ed il peso dei collanti.
  • Spessore del cartone: misura la distanza in mm tra le due superfici esterne di un cartone ondulato.
  • Edge Compression Test (ECT): è una prova di compressione che si effettua su una striscia di cartone, volta a misura lo sforzo espresso in kN/m (nel sistema S.I.; si può ottenere comunemente anche il dato espresso in kg*cm) necessario per deformare la striscia stessa. Tale dato consente di confrontare i vari cartoni ondulati rispetto alla loro resistenza alla compressione ed è strettamente correlato con la resistenza all’impilamento degli imballi relativi.
  • Resistenza allo scoppio: misura la resistenza alla perforazione di una cartone ondulato. Si esprime in kPa nel sistema S.I. (o più comunemente in kg/cm²) ed è la misura della resistenza alla rottura di un cartone sottoposto ad una pressione in senso ortogonale alla sua superficie.
  • Box Compression Test (BCT): misura la resistenza di una scatola di cartone ondulato vuota alla compressione verticale, ovvero quanti chilogrammi può portare una scatola prima di schiacciarsi. Questo dato è fortemente correlato con quello di ECT del cartone che compone l’imballo.
  • Assorbimento d’acqua (COBB): misura in gr/m2 la quantità di acqua distillata che viene assorbita da un determinato cartone sottoposto ad una pressione di colonna d’acqua di 1 cm in un determinato intervallo temporale. Il dato che si ricava può essere utile sia per eventuali considerazione sulla stampa (dato che i colori nella stampa flexo sono a base acqua), sia nell’impiego del cartone in ambienti umidi (es. celle frigorifere o cantine).

Macchinario per stampaggio.

Immagine

Immagine

 

Inconvenienti più diffusi nella fabbricazione del cartone ondulato.

La fabbricazione del cartone ondulato è strettamente legata al livello tecnologico del macchinario impiegato nonché alla qualità della materia prima utilizzata (la carta in bobine) ma dipende anche dall’abilità e dall’addestramento degli addetti al funzionamento dell’ondulatore. Gli inconvenienti più comuni sono:

  • Cartone prodotto con onda schiacciata o inclinata;
  • Cartone non planare o incurvato;
  • Copertine non incollate o danneggiate;

Il cartone ondulato è riciclabile e biodegradabile al 100%. Il riutilizzo del cartone permette non solo un notevole risparmio economico ma garantisce anche il rispetto dell’ambiente riducendo notevolmente il volume dei rifiuti che giungono in discarica. In Italia circa l’80% della fibra impiegata per la produzione del cartone ondulato deriva da materiale di riciclo detto macero e solo il 20% della fibra impiegata è fibra vergine proveniente da foreste ma sempre gestite secondo criteri di sostenibilità ambientale dall’industria cartaria stessa. Con il riutilizzo le fibre di cellulosa tendono a perdere le prestazioni originarie pertanto il ricorso alla fibra vergine è comunque necessario per garantire lo standard prestazionale anche delle carte più povere. Occorre ricordare, inoltre, che il cartone per uso alimentare impiegato a contatto diretto con alimenti deve essere prodotto con carte di pura cellulosa e senza contenuti di macero come previsto dal Decreto Ministeriale del 21 marzo 1973 e successive modifiche (esempio tipico il cartone per le pizze).

Con l’introduzione delle nuove normative legate al settore imballaggi, il cartone ondulato si è confermato come un materiale ecologico e molto adatto per l’imballaggio. I collanti sono ormai tutti naturali derivati da amido di mais o fecola.

Trasformato in imballaggio finito, il cartone ondulato diventa un contenitore robusto, versatile, ideale per raggruppare, trasportare e proteggere i prodotti in esso contenuti. Il modello di scatola più comune e più utilizzato per le sue doti di economicità di produzione e versatilità nell’utilizzo è senza dubbio la scatola americana.