GLI SCHERMI CURVI (Rivisto da Karim Fayad)

I componenti:

I display al plasma sono sostanzialmente delle lampade a luce fluorescente (come i neon). Molte piccole celle posizionate in mezzo a due pannelli di vetro mantengono una mistura inerte di gas nobili (neon e xeno).il gas nelle celle viene elettricamente trasformato in un plasma, il quale poi eccita i fosfori ad emettere luce.i gas di xeno e neon in un televisore al plasma sono contenuti in centinaia di migliaia di piccole celle posizionate tra due pannelli di vetro.anche dei lunghi elettrodi vengono inseriti tra i pannelli di vetro, davanti e dietro le celle. Gli elettrodi di indirizzamento sono dietro le celle, lungo il pannello di vetro posteriore.Gli elettrodi trasparenti dello schermo, che sono circondati da materiale elettrico isolante e coperti di uno strato protettivo in ossido di magnesio, sono montati davanti alle celle,lungo il vetro anteriore.la circuiteria di controllo carica gli elettrodi che si incrociano ad una cella, creando una differenza di potenziale tra davanti e dietro, provocando la ionizzazione dei gas e la formazione di plasma; quando gli ioni del gas si dirigono verso gli elettrodi e collidono vengono emessi dei fotoni.

Ogni pixel è fatto di tre sottocelle separate, ognuna con fosfori di diversi colori.Una sottocella ha il fosforo per la luce rossa, una per la luce verde e l’altra per la luce blu. Questi colori si uniscono assieme per creare il colore totale del pixel, analogamente ai computer a tre colori. Variando gli impulsi di corrente che scorrono atraverso le diverse celle migliaia di volte al secondo, il sistema di controllo può aumentareo diminuire l’intensità di ogni colore di ogni sottocella per creare miliardi di diverse combinazioni di verde, rosso e blu.in questo modo il sistema di controllo può produrre la maggior parte dei colori visibili.

Plasma-display-composition

Il vetro(Risultato dalla curvatura dello schermo)

La lastra di vetro viene messa sullo stampo e con esso introdotto nel forno. La lastra si rammollisce e per il peso proprio, si adagia sullo stampo nel sistema a gravità, oppure viene accompagnata dalle pinze meccaniche se le curve sono tali da non permettere con la sola forza di gravità l’adesione della stessa allo stampo.

Curvatura vetro

Proprietà della materia

1. UNITA’ DI MISURA
L’unità di misura è una quantità prestabilita di una grandezza fisica definita e adottata per convenzione o per legge e utilizzata come termine di riferimento per la misura di grandezze della stessa specie. Ogni altro valore di una grandezza fisica può essere espresso tramite multipli o sottomultipli della sua unità di misura.
Il sistema internazionale di unità, indicato con la sigla “SI”, è il sistema di unità di misura da impiegare in tutti i settori.
Tabella delle grandezze fondamentali:
tabella1

Le grandezze derivate invece sono quelle grandezze che si possono derivare, tramite opportune formule matematiche, dalle grandezze fisiche fondamentali.  Anche le loro unità di misura non possono essere scelte in maniera indipendente, ma devono essere derivate in maniera consistente dalle unità di misura delle grandezze fondamentali.

Tabella delle grandezze derivate:
tabella2

 

 

2. MASSA E DESITA’

Nell’attuale Sistema internazionale di unità di misura (SI) la massa è stata scelta come grandezza fisica fondamentale, cioè non esprimibile in termini di altre grandezze. La sua unità di misura è il chilogrammo, indicato col simbolo kg.
La massa definisce la misura di quantità di materia di cui macroscopicamente si può considerare costituito un corpo.

Si definisce densità assoluta il rapporto tra la massa di un corpo e il suo volume. La densità assoluta si calcola con la seguente formula: d = m/V
Nel Sistema Internazionale la densità si misura in g/cm3.
La densità è una proprietà intensiva della materia che dipende dalla temperatura e dalla pressione (specialmente per i gas).
Per quasi tutti i materiali, un aumento di temperatura causa un aumento di volume e quindi una diminuzione del valore della densità. Soltanto il ghiaccio e poche altre sostanze fanno eccezione a questa regola.
L’acqua alla temperatura di 4 °C ha la massa di 1 grammo, è quindi l’acqua l’unità campione a cui tutti gli altri materiali vanno messi a confronto.
Es: un cm3 di acqua ha massa 1g
un cm3 di alluminio ha massa 2,7 g
La densità relativa è quindi il rapporto tra la massa di una sostanza e un’eguale massa di acqua distillata a 4 °C.
massa
densità

 

3. MASSA VOLUMICA

La massa volumica è sinonimo di peso specifico.
Il peso specifico indica quanto è pesante un determinato materiale in relazione alle sue dimensioni.
Peso specifico Ps = Massa / volume
Esempio:
1 decimetro cubo di acqua a 4°C ha peso specifico pari a 1.
Il ghiaccio ( Ps = 0,917 ) galleggia sull’acqua perchè è un po’ più leggero della stessa.
Il vino incece, che ha Ps uguale a 0.99, è talmente vicino al Ps dell’acqua da mescolarsi con essa, ma se lo versi lentamente si noterà che galleggia.
L’unità di misura è il kg/m3.
La definizione di peso specifico è più vecchia, desueta, di massa volumica, ma il concetto è lo stesso.
La nuova definizione del peso specifico nelle parole “massa” e “ volume” spiega molto bene il suo significato mettendo in relazione le parole chiave del concetto.
La massa volumica ha notevole importanza in quanto a volte è necessario progettare elementi che siano molto leggeri o altre volte si ha esigenza che alcuni oggetti siano molto pesanti.
Può essere molto utile quando per esempio è necessario conoscere la quantità di materiale necessaria per realizzare un oggetto tramite lo stampaggio.
stampaggio stampo

Per quanto riguarda le leghe la massa volumica può variare a seconda delle percentuali dei metalli che formano la lega.
lega

 

Per il legno invece la massa volumica può variare a seconda di: specie, struttura, età, umidità e da zona a zona dello stesso tronco per la diversa compattezza delle fibre.
legno
Nei marmi vale la stessa regola vista prima per le leghe: dipende dalla percentuale dei minerali presenti.
marmo

 

Tabella compartiva della massa volumica delle sostanze:
tabella3

4. LA FORZA

La forza è definita come massa per accelerazione: F= m x a
Il peso di una persona è la forza che la persona, dotata di una certa massa, esercita sulla bilancia a seguito dell’attrazione di gravità, che sulla superficie terrestre determina un accelerazione di 9,81 m/s.
es: un uomo pesa 100 kg
l’accelerazione è di 10 m/s
100 (m) x 10 (a) = 1000 (Forza gravitazione)
La forza, come l’accelerazione, è una grandezza vettoriale dotata di un modulo, una direzione e un verso.
Si tratta di un segmento orientato, la cui lunghezza è proporzionale all’intensità della grandezza associata, la direzione indica la sua retta di applicazione ed il verso il senso di percorrenza.
La velocità, l’accelerazione la forza sono tutti esempi di grandezze vettoriali molto comuni in fisica.
vettoriale

 

 

5. GLI STATI DELLA MATERIA

Gli stati della materia sono: solido, liquido, gassoso, plasma.
E’ in questi quattro stati che si presenta tutta la materia esistente nell’universo e noi siamo abituati  a considerare in uno di questi stati le sostanze che conosciamo, ma questo è errato, perchè tutte le sostanze che vediamo attorno a noi, esistono in ognuno di questi quattro stati.
es: il rame è solido sino a 1080 °C ai 2580 °C, dopo di che entra in ebollizione ed inizia lo stato gassoso.

Se la temperatura varia, varia anche lo stato in cui si trova la sostanza considerata.
Un materiale allo stato solido ha un volume e una forma propria.
Un materiale allo stato liquido invece ha un volume proprio, ma acquisisce la forma del recipiente che lo contiene.
Il materiale allo stato aeriforme non ha né volume né forma propria, ma si espande fino a occupare tutto lo spazio disponibile.
Esiste “un quarto stato”, il plasma. Esso è costituito da un insieme di particelle con cariche elettriche positive (ioni) e negative (elettroni). Il plasma non è uno stato eccezionale, poiché costituisce il 99% dell’Universo, come conseguenza dell’elevata temperatura esistente nei corpi celesti, che porta alla ionizzazione degli atomi.
La formazione di questo stato della materia è possibile solo se il materiale di partenza è sotto forma gassosa e viene portato a temperature comprese tra 3000°C e 20 000°C. Il plasma si trova all’interno del Sole, nei gas interstellari, nei nuclei delle galassie. Nell’esperienza comune, si genera il plasma quando si fornisce energia ad un gas fino a che questo diventa fluorescente: è quanto si verifica nelle lampade al neon; anche l’arco elettrico, i lampi ed i veicoli spaziali, quando rientrano nell’atmosfera generano questo particolare stato della materia.

sublimazione: passaggio dallo stato solido a quello aeriforme o gassoso;
brinamento: passaggio dallo stato gassoso a quello solido;
fusione: passaggio dallo stato solido a quello liquido;
solidificazione: passaggio dallo stato liquido a quello solido;
evaporazione: passaggio dallo stato liquido a quello aeriforme;
condensazione: passaggio dallo stato aeriforme a quello liquido.
ionizzazione: passaggio dallo statogassoso a quello plasma.
deionizzazione: passaggio dallo stato plasma a quello gassoso.
stato della materia

6. PROPRIETà TERMICHE

Ogni corpo se sottoposto all’azione del calore, altera la propria struttura molecolare variandone le dimensioni.

Nei metalli la dilatazione termica è considerata uno svantaggio in quanto le lavorazioni di fusione e colata sono soggette, nel raffreddamento, a ritiri sensibili che creano inconvenienti a volte anche gravi. Le giunzioni dei ponti tengono in considerzione questa importante caratteristica.
dilataz.termica

 

Quando il legno viene sottoposto a riscaldamento viene sollecitato da forze interne che provocano deformazioni, rigonfiamenti e dilatazioni dovute a cambiamenti temporanei di umidità e temperatura.
legnodil

 

Il riscaldamento e il raffreddamento parziale del vetro generano in questo delle sollecitazioni che possono provocare rotture e il coefficiente di dilatazione è un dato molto importante per la produzione di vetri ad alta resistenza termica.
vetro

 

La stabilita’ termica è molto importante per le materie plastiche, infatti molti termoplastici col calore si decompongono chimicamente, creando gravi inconvenienti.
plastica