GLI SCHERMI CURVI (Rivisto da Karim Fayad)

I componenti:

I display al plasma sono sostanzialmente delle lampade a luce fluorescente (come i neon). Molte piccole celle posizionate in mezzo a due pannelli di vetro mantengono una mistura inerte di gas nobili (neon e xeno).il gas nelle celle viene elettricamente trasformato in un plasma, il quale poi eccita i fosfori ad emettere luce.i gas di xeno e neon in un televisore al plasma sono contenuti in centinaia di migliaia di piccole celle posizionate tra due pannelli di vetro.anche dei lunghi elettrodi vengono inseriti tra i pannelli di vetro, davanti e dietro le celle. Gli elettrodi di indirizzamento sono dietro le celle, lungo il pannello di vetro posteriore.Gli elettrodi trasparenti dello schermo, che sono circondati da materiale elettrico isolante e coperti di uno strato protettivo in ossido di magnesio, sono montati davanti alle celle,lungo il vetro anteriore.la circuiteria di controllo carica gli elettrodi che si incrociano ad una cella, creando una differenza di potenziale tra davanti e dietro, provocando la ionizzazione dei gas e la formazione di plasma; quando gli ioni del gas si dirigono verso gli elettrodi e collidono vengono emessi dei fotoni.

Ogni pixel è fatto di tre sottocelle separate, ognuna con fosfori di diversi colori.Una sottocella ha il fosforo per la luce rossa, una per la luce verde e l’altra per la luce blu. Questi colori si uniscono assieme per creare il colore totale del pixel, analogamente ai computer a tre colori. Variando gli impulsi di corrente che scorrono atraverso le diverse celle migliaia di volte al secondo, il sistema di controllo può aumentareo diminuire l’intensità di ogni colore di ogni sottocella per creare miliardi di diverse combinazioni di verde, rosso e blu.in questo modo il sistema di controllo può produrre la maggior parte dei colori visibili.

Plasma-display-composition

Il vetro(Risultato dalla curvatura dello schermo)

La lastra di vetro viene messa sullo stampo e con esso introdotto nel forno. La lastra si rammollisce e per il peso proprio, si adagia sullo stampo nel sistema a gravità, oppure viene accompagnata dalle pinze meccaniche se le curve sono tali da non permettere con la sola forza di gravità l’adesione della stessa allo stampo.

Curvatura vetro

Annunci

Prototipazione Rapida _ RP

021 rapid-prototyping-propeller-fdm 451186

La prototipazione rapida è un insieme di tecniche industriali che consentono la produzione di oggetti di geometria complessa, in tempi molto ridotti, a partire dalla definizione matematica dell’oggetto realizzata su un modello tridimensionale, volte a realizzare il cosiddetto prototipo

Indipendentemente da come lo si realizza, per prototipo si intende “il primo elemento della serie”. Questi può essere concettuale, funzionale, tecnico o di pre-serie, e in ogni caso può svolgere funzioni differenti nell’azienda: può servire per valutare costi, tempi di ciclo, risposta del mercato e così via.

Si basa sulla considerazione che ogni oggetto costituito da tante sezioni di spessore infinitesimo. Il prototipo viene, così realizzato sezione dopo sezione, trasformando il problema da tridimensionale in bidimensionale. Gli oggetti sono ottenuti con progressiva aggiunta di materia. Per questo motivo la tecnologia RP è anche definita tecnica di produzione per strati o per piani (layer manufacturing)

Definizione

Il prototipo non è una necessità avvertita solo dalle moderne aziende. Il ricorso al prototipo è, infatti, un’esigenza sentita sin dall’antichità, quando ci si poteva affidare solo a carta e attrezzi da disegno, per cui la realizzazione del prototipo permetteva di effettuare importanti osservazioni sul progetto in corso. I materiali e le tecniche con cui i prototipi si realizzano sono diversi e, ricorrendo a tecniche tradizionali, la loro costruzione è affidata ad artigiani o modellisti. In questo caso ci troviamo di fronte a una difficoltà incompatibile con le esigenze odierne della competizione globale: la diminuzione dei costi e dei tempi di realizzazione.

Mentre negli scenari competitivi è ampiamente sopportabile un aumento dei costi di sviluppo, sicuramente non è accettabile un ritardo per l’immissione sul mercato di un dato prodotto. Infatti un ritardo di pochi mesi può causare una perdita sugli utili anche del 30%, mentre un aumento dei costi di sviluppo, anche del 50%, è ampiamente sopportabile per le imprese.

Per quanto premesso sono stati messi a punto processi con l’obiettivo di ridurre sia i costi di realizzazione che i tempi di costruzione del prototipo stesso; queste tecniche vengono definite rapid prototyping (RP) o prototipazione rapida.

Lo sviluppo delle prime macchine RP è dovuto a Charles W. Hull, che per primo realizzò una macchina di tipo SLA-1 (StereoLitographic Apparatus). Successivamente gli studi sono avanzati così da giungere a generazioni successive della SLA e messa a punto di tecnologie differenti quali LOM (Laminated Object Manufactoring), SLS (Selective Laser Sintering), FDM (Fused Deposition Modeling), LENS (Laser engineered net shaping). Anche lo scenario d’impiego è cambiato, poiché lo sviluppo di queste macchine non è più affidato alla collaborazione con grosse aziende o centri di ricerca, ma soprattutto grazie alla diffusione nelle piccole e medie imprese, imputabile alla sensibile diminuzione dei costi di queste tecnologie.

La prototipazione rapida si differenzia dalle tecniche tradizionali di lavorazioni meccaniche perché mentre queste ultime operano per asportazione di materiale, ossia ottengono la forma voluta da un blocco all’interno della quale essa già esiste, le tecniche RP operano su una base concettuale inversa, ossia per addizione di materiale, con la possibilità di poter ottenere forme anche molto complesse, impossibili da realizzare con le lavorazioni tradizionali, semplicemente aggiungendo materiale strato per strato. Si parla, infatti, di layered manufacturing (fabbricazione stratificata).

Classificazione delle tecniche RP

La prototipazione rapida è una tecnica piuttosto recente, ma anche se giovane si può tranquillamente affermare che i materiali e le macchine evolvono continuamente. Ogni casa costruttrice ha sviluppato e continua a sviluppare una propria tecnica con l’impiego di materiali molto differenti tra loro. Infatti la classificazione principale delle tecniche RP è sulla natura dei materiali impiegati, principalmente sul diverso stato dei materiali impiegati, in particolare polveri, liquidi, solidi. Oggi l’impiego di polveri sta assumendo sempre maggiore importanza, poiché teoricamente la macchina può rimanere la stessa e, cambiando il tipo di polvere, si possono ottenere oggetti con caratteristiche differenti, sia estetiche sia meccaniche.

Oltre alle polveri, che possono essere a un componente o due componenti per la presenza di un legante, ci sono tecniche che si basano su liquidi, costituiti sostanzialmente da resine che vengono fatte polimerizzare, e infine l’uso di materiali solidi quali fili o fogli speciali di carta.

Le fasi della RP

Macchina per prototipazione rapida a sinterizzazione selettiva mediante laser

La prototipazione rapida si può paragonare all’operazione di stampa di un testo, solo un po’ più complicata. In dettaglio le fasi che portano alla realizzazione del prototipo sono le seguenti:

  1. Creazione del file STL
  2. Gestione del file STL
  3. Costruzione del prototipo layer by layer (strato dopo strato)
  4. Post trattamenti

Fase 1: Creazione del file STL

È una fase preliminare alla prototipazione vera e propria e consiste nella generazione del file STL e nella sua verifica. Il file STL (Standard Triangulation Language To Layer) è uno standard grafico che descrive l’oggetto tramite una decomposizione in triangoli delle superfici che lo compongono. In pratica le superfici del pezzo vengono meshate (‘“mesh” significa “maglia”) con elementi triangolari. Approssimativamente il numero di questi triangoli è tanto maggiore quanto meglio si vuole approssimare la superficie. Lo standard STL fu sviluppato inizialmente dalla “3D Systems” ed è attualmente lo standard accettato da quasi tutti i sistemi di prototipazione rapida in commercio.

La fase di generazione del file STL si può scomporre in due sotto-processi; in particolare la prima sotto-fase impegna l’intelletto del progettista e consiste nel realizzare il modello matematico, esclusivamente in ambiente CAD, partendo da due strade ben distinte e precisamente:

  • Mediante l’ausilio integrale di software CAD
  • Mediante l’impiego di tecniche di ingegneria inversa

La prima delle due precedenti è la strada che si percorre quando si realizza un prodotto che si ha già in mente e che si vuole mettere nero su bianco, oppure si deve procedere alla modifica di un prodotto esistente di cui si ha già il modello matematico. La seconda strada è indicata quando non si dispone o non esiste il modello matematico e si procede, mediante tecniche di ingegneria inversa (reverse engineering), ossia mediante appositi strumenti si scansiona la superficie dell’oggetto di cui si vuole il modello CAD. Questi restituiscono un certo numero di punti appartenenti alle superfici scansionate, punti che in gergo si individuano con il nome “nuvola di punti”. La nuvola viene elaborata tramite CAD o software dedicati per ottenere il modello matematico tridimensionale.

La seconda sotto-fase della fase 1 consiste nel realizzare il file di estensione .STL (Standard Triangulation Language) mediante apposite utility di esportazione o direttamente dal CAD qualora questa utility sia integrata oppure si deve prima salvare in un formato intermedio (Iges, Acis-Sat) e poi con software dedicato realizzare l’STL. Bisogna fare attenzione a non effettuare troppi passaggi prima di arrivare all’STL per evitare un deterioramento eccessivo della matematica del modello.

Fase 2: Gestione del file STL

Una volta generato il file STL si deve verificare che sia esente da errori. Il controllo si fa attraverso software dedicati, commerciali come il Magics RP della “Materialise” o open source mediante i quali oltre a individuare e correggere gli errori presenti, si possono progettare i supporti per le parti a sbalzo, orientare gli oggetti (operazione che può influenzare fortemente il risultato finale), modificarli ed eseguire lo slicing, cioè generare le “fette” che sovrapposte le une alle altre daranno vita al solido finale. Lo slicing è una operazione critica perché determina le caratteristiche superficiali dell’oggetto finito. Questa operazione può essere di tipo uniforme oppure adattativo quando lo spessore delle slice (letteralmente: fette) è variabile e lo si sceglie in funzione della curvatura della superficie al fine di adattare meglio la geometria finale, riducendo l’effetto staircase (le superfici inclinate sono approssimate da scalini). Una descrizione più specifica sarà descritta più avanti.

Fase 3: Costruzione del prototipo “Layer by Layer”

Consiste nell’inviare alla macchina il file STL o le slice, a seconda del modello di prototipatrice, e procedere con la deposizione del materiale strato per strato fino ad arrivare all’oggetto finale. Questa fase può durare alcune ore in funzione delle dimensioni dell’oggetto in particolare dell’altezza, pertanto un’accurata scelta dell’orientazione è importante sia per la finitura superficiale sia per ridurre i tempi macchina.

Fase 4: Post trattamenti

Sono operazioni manuali il cui scopo è togliere l’oggetto stampato dalla macchina e liberarlo dal supporto o dal materiale in eccesso ed eventualmente operare ulteriori finiture. Queste possono essere semplici, nel caso in cui si tratta di rimuovere il prototipo dalle polveri in eccesso, o leggermente più complicate, come nel caso della tecnica PolyJET, dove si ricorre a un’idropulitrice che rimuove il liquido di supporto. In altri casi si può procedere a un miglioramento delle superfici ricorrendo a trattamenti superficiali quali l’impiego di carta abrasiva o verniciatura.

Problematiche della RP

Come ogni attività anche la RP è soggetta ad alcune problematiche che influenzano il risultato finale, pertanto un’attenta analisi preliminare e una corretta applicazione delle metodologie derivanti da queste analisi aiuta a diminuire di molto gli inconvenienti che potrebbero verificarsi.

Problematiche di generazione del STL

La prima problematica che interviene è quella legata alla generazione del file STL, dato che un eccesso di errori presenti in esso può deteriorare a tal punto la rappresentazione dell’oggetto che il risultato finale è tale da non consentire l’utilizzo del prototipo. Gli errori più comuni e le cause che li generano sono:

  • Discontinuità del verso della normale dei triangoli; i triangoli presentano differente orientazione che genera rugosità superficiale sul pezzo finito. Si è appurato che questo problema si presenta quando il pezzo occupa contemporaneamente più quadranti e il software non gestisce questo baco.
  • Overlapping (sovrapposizione) dei triangoli: alcuni triangoli risultano parzialmente o completamente sovrapposti. Questo genere di incongruenza si presenta maggiormente quando si fa uso di operazioni booleane.
  • Holes (fori): i software preposti alla generazione dell’STL non sono in grado di gestire correttamente le operazioni booleane e possono creare dei fori che devono essere chiusi
  • Bad contours (contorni imperfetti): i triangoli, per effetto di una errata scelta della tolleranza e delle caratteristiche della superficie, risultano discontinui pertanto si deve ricorrere a una operazione di stitching (ricucitura), ossia la superficie o una parte deve essere tirata in modo da far combaciare i lati dei triangoli.

Problematiche di slicing

Rapid_prototyping_slicing

Illustrazione del software che sviluppa posizione, forma e dimensioni degli slice. Voxel è il volume elementare (l’analogo del “pixel” in tre dimensioni) e cioè il più piccolo elemento distinguibile in uno spazio tridimensionale. Ogni “voxel” sarà individuato dalle coordinate x, y, z di uno dei suoi otto angoli o dal suo centro. Il termine è usato nelle rappresentazioni tridimensionali

Lo slicing, come già ribadito, è la suddivisione del modello matematico, ossia il file STL che già risulta in parte degradato dalla conversione dal formato proprio del CAD all’STL, in “fette” orientate orizzontalmente rispetto alla disposizione che si è fatta dell’oggetto all’interno del volume di lavoro nella macchina. Data la particolare metodologia di lavorazione, la superficie finale del pezzo presenterà un aspetto a gradini. È evidente che a differenti spessori delle slice corrisponderanno differenti risultati finali, in particolare per le superfici curve. L’ideale sarebbe di disporre spessori infinitesimali e macchine capaci di stampare tali slice in modo velocissimo.

Per macchine a spessore di slice costante, dette slice uniformi, il problema non si pone più di tanto dato che il campo d’intervento dell’operatore è relegato alla sola scelta dell’orientazione del pezzo sulla tavola di lavoro. Discorso differente nel caso di sistemi a slice adattative; infatti, appositi software si occupano di modulare l’altezza delle slice in base alla curvatura del pezzo, per cui si avranno slice più spesse di fronte a superfici a elevato raggio di curvatura e più sottili nelle zone a curvatura elevata. Il risultato finale è quello di avere una superficie a gradini, effetto denominato staircase (letteralmente: scalinata, gradinata).

Problematiche di contenimento

Un altro importante inconveniente cui si può incorrere è il fatto che il prototipo può contenere o meno la superficie nominale. Se il profilo nominale si trova all’interno del prototipo, con una successiva figura di finitura, nel caso non siano rispettate le tolleranze indicate, il prototipo può essere accettato. Se il profilo nominale è all’esterno del profilo, se le tolleranze lo permettono, il prototipo può essere considerato buono.

Problematiche d’interfacciamento

Sono le problematiche che si riscontrano durante il passaggio dati dal CAD alla macchina. C’è da dire che oggi i più diffusi CAD hanno integrati moduli di esportazione, per cui i problemi citati nel paragrafo “Problematiche di generazione del STL” sono alquanto ridotti anche se in alcune occasioni possono riscontrarsi.

Ottimizzazione della fase di stampa

La scelta di un’orientazione piuttosto che un’altra permette di avere risultati differenti. Ottimizzare la fase di stampa consiste nello scegliere la corretta orientazione per tutti i corpi messi sulla tavola di lavoro; infatti, quando si tratta di disporre un solo pezzo questa risulta abbastanza facile, poiché si deve tenere conto di ciò che può succedere al singolo pezzo.

Cambiare l’angolo che una superficie forma con la base di lavoro aumenta o diminuisce la rugosità a causa dell’aumentare dell’effetto staircase. Quando invece si devono disporre più pezzi, oltre a tenere sotto controllo quanto appena esposto, si deve cercare di ridurre il più possibile il tempo di lavorazione.

I tempi di lavorazione si riducono in modo diverso a secondo della macchina impiegata. Una disposizione con i pezzi lungo l’asse y, ha un tempo di costruzione molto superiore a quello per realizzare gli stessi pezzi disposti lungo l’asse x della macchina.

Le linee guida che si possono delineare per la disposizione dei pezzi sono le seguenti:

  • Valutare preventivamente l’orientazione ottimale e tenere presenti le disposizioni possibili, compatibilmente con le specifiche imposte dal committente.
  • Tra le orientazioni ammissibili, scegliere quelle che presentano altezza inferiore.
  • Disporre sulla tray (tavola di appoggio) pezzi che presentano altezza il più possibile omogenea
  • Cercare di ricoprire la maggior superficie possibile della tray, con il criterio precedentemente esposto, al fine di ridurre le passate per completare la slice.

Le tecniche RP

Dalla prima prototipatrice di Charles W. Hull basata sulla tecnica SLA-1 si sono sviluppate molte altre tecniche la cui differenza sostanziale consiste nell’avere oggetti con caratteristiche meccaniche che si avvicinano sempre più alla produzione di serie. Vediamo adesso qualcuna di queste tecniche.

SLA (StereoLitographic Apparatus)

CAD_CAM

1) Sviluppo del modello con CAD

2) Elaborazione CAM per tradurre il modello in slice

3) Liquido che polimerizza (passa allo stato solido) in presenza di luce laser

4) Meccanica che, guidata dal computer, abbassa la tavola di appoggio (tray) e quindi il prototipo in costruzione realizzando in successione gli slice (“le fette”) superiori

5) Il generatore di luce laser che viene guidato dal computer per generare, per polimerizzazione (rendere solido il liquido), il prototipo strato dopo strato

La stereolitografia è stata la prima tecnica messa a punto. Si basa sulla polimerizzazione di un liquido per effetto di un laser. Nella prima fase si predispone il posizionamento finale del pezzo da realizzare su workstation ed eventualmente si generano i supporti. Successivamente il laser, focalizzato sul piano di lavoro mediante sistemi ottici, provvede a polimerizzare la prima sezione del prototipo. Successivamente il piano si abbassa e il procedimento prosegue con la polimerizzazione dello strato successivo.

Struttura a nido d’ape

Per ridurre il tempo di costruzione il laser polimerizza solo i contorni esterni delle superfici e le collega con una struttura a nido d’ape per cui alla fine della costruzione il pezzo è esposto a raggi UV mediante apposite lampade per un tempo sufficiente alla completa polimerizzazione.

La tecnica PolyJET

Il processo pratico si basa sulla deposizione di strati liquidi di fotopolimeri sensibili ai raggi ultra violetti e quasi in contemporanea due potenti lampade UV provvedono al loro indurimento. Più precisamente una serie di pompe trasportano due resine, quella che serve per realizzare il modello e quella che serve come supporto, dalle cartucce ai serbatoi della testina. La testina provvede a deporre in modo appropriato le resine. In particolare la resina “modello” è depositata dove c’è il volume del prototipo, invece quella supporto si utilizza per riempire le cavità o per sorreggere pareti inclinate di un angolo maggiore di 88° (gradi sessagesimali) con la linea dell’orizzonte (lato oggetto).

Deposta la slice, che presenta spessore di 16 μm, viene esposta a radiazione UV per mezzo delle lampade UV poste ai lati della testina e solidali con essa. A questo punto il piano si abbassa della quantità necessaria e il procedimento si ripete.

Questa tecnica ha la caratteristica di ottenere delle superfici la cui rugosità varia dai 2-3 µm ai circa 15 µm, con delle risoluzioni molto spinte.

 

Multi Jet Modeling (MJM)

Questo metodo è quanto di più simile ci sia a una stampante a getto di inchiostro. Nella testina è presente una resina termoplastica che viene disposta sulla tavola di lavoro a creare la slice. Successivamente si abbassa la tray e la resina aderisce alla slice precedente.

 

Drop on Demand (DOD)

Questo metodo è simile al precedente, il materiale del modello e quello del supporto sono depositati in sequenza e poi si passa alla slice successiva fino alla fine. Il post trattamento consiste nell’eliminare il materiale di supporto.

(Selective) Laser Sintering

La sinterizzazione laser, una volta chiamata anche SLS (Sinterizzazione Laser Selettiva), fa impiego di polveri, termoplastiche, metalliche o silicee, e come dice il nome, fa uso di un laser per sinterizzare i materiali impiegati per la costruzione del prototipo. Inizialmente viene steso un sottile strato di polvere da un apposito apparato e il laser provvede alla sinterizzazione ove necessario. La tavola si abbassa della quantità voluta, si stende un altro strato di polvere e il tutto si ripete. Il vantaggio sta nel fatto che si possono utilizzare diverse tipologie di polveri e non c’è bisogno di prevedere dei supporti dato che è la polvere non sinterizzata che provvede a sostenere i piani superiori. Alla fine del processo il pezzo deve essere liberato dalla polvere in eccesso, operazione non molto complessa, e nel caso di polveri metalliche e ceramiche, subiscono anche un trattamento termico per migliorarne le caratteristiche. Per tutti gli altri materiali si possono prevedere altri tipi di trattamento a secondo delle esigenze.

 

Modellazione a deposizone fusa (FDM)

La modellazione a deposizone fusa (Fused Deposition Modelling, FDM) fa uso di fili e barrette di materiale termoplastico, deposto su un vassoio da una testina capace di muoversi lungo 3 assi x, y e z. Il processo è tutto automatico, così come l’eventuale generazione dei supporti, spesso creati a nido d’ape per alleggerire la struttura. Alla fine della lavorazione il prototipo non richiede di ulteriori trattamenti fuorché l’eliminazione dei supporti ove non necessari.

Produzione di oggetti laminati (LOM)

La produzione di oggetti laminati (Laminated Object Manufacturing, LOM) o laminazione di fogli di carta, impiega fogli di carta speciale tagliata secondo la slice voluta e incollata alla precedente. Il suo vantaggio è quello di poter avere dimensioni relativamente elevate per il volume di lavoro. Il supporto è costituito dalla carta in eccesso e il post trattamento è molto delicato in quanto bisogna estrarre il materiale in eccesso con attrezzi tipici della lavorazione del legno. In più, avendo il prototipo un aspetto simile al compensato, bisogna fare una finitura con carta abrasiva per evitare rischi di distacco degli strati e sicuramente un trattamento di impermeabilizzazione per prevenire l’assorbimento di umidità.

Stampa 3D

Questa lavorazione è simile alla SLS, ma le polveri anziché essere sinterizzate vengono mantenute insieme da un collante spruzzato con una testina simile a quelle presenti nelle stampanti a getto d’inchiostro. Il collante viene rapidamente asciugato e il prototipo ottenuto va delicatamente estratto per evitare sfaldamenti e sottoposto a un trattamento termico per migliorarne le caratteristiche.

Sul mercato oggi esistono stampanti 3D “fai da te” che utilizzano una varietà di materiali e che permettono di creare la maggior parte di oggetti 3D, come ad esempio la stampante Fabber prodotta dal progetto open source Fab@Home[3] o il progetto RepRap.

Fusione laser selettiva (SLM)

Anche la fusione laser selettiva (Selective Laser Melting, SLM) è del tutto simile alla sinterizzazione laser selettiva, ma se ne differenzia per l’impiego di polveri metalliche integrali, ossia senza l’ausilio di bassi fondenti. Ne deriva che anche il laser è più potente e alla fine si ha un oggetto del tutto simile alla produzione di serie, che non richiede particolari finiture superficiali e che può essere sottoposto tranquillamente a lavorazioni tradizionali. Allo scopo di prevenire l’ossidazione dei metalli nella camera di lavoro si ricrea un’atmosfera inerte.

Electron Beam Melting (fusione da fascio elettronico)

È del tutto simile alla precedente, solo che per permettere una corretta focalizzazione del fascio elettronico sul piano di lavoro si deve creare il vuoto nella camera di lavoro, il che previene anche la formazione di ossidi metallici nelle polveri.

Il fascio elettronico, potendo concentrare una potenza di spot superiore rispetto al laser, può fondere polveri metalliche alto fondenti quali il titanio.

Una particolare applicazione fattibile con questa tecnica è la produzione di protesi biomediche in titanio, mediante l’utilizzo di polveri di titanio ad alta compatibilità biomedica.

Laser engineered net shaping (LENS)

È un processo di formatura con cui si ottengono componenti metallici depositando fili o polvere metallici in una poltiglia di metallo generata dall’azione di un fascio laser di elevata potenza sulla superficie superiore di un substrato metallico preventivamente depositato su una piattaforma.

 


 

Bibliografia

  • F. Bernardo – “Prototipazione Rapida e Progettazione Aeronautica: dall’analisi dei parametri operativi alla verifica sperimentale del prototipo” – Tesi di Laurea – 2006 – Università degli Studi di Salerno
  • Galardi L., Truono F. – “La prototipazione rapida come strumento di benchmarking” – Tesi di laurea – 2003 – Università degli Studi di Salerno
  • Slide dell’università degli Studi di Lecce, Prof. Carola Esposito Corcione

 

Materiali innovativi: Il Groffee.

foto

Nuovo materiale scoperto nella categoria dei materiali innovativi: il Groffee.

Il Groffee non è altro che una miscela di carta non stampata, fondi di caffè e cera d’api. Nasce quindi dall’unione di un materiale composito, uno organico di scarto ed un legante di origine naturale.

Questo materiale nasce principalmente dallo studio dettagliato di uno dei suoi ingredienti principali, i fondi di caffè: nonostante molti di noi ormai siano passati dall’uso della tradizionale moka da caffè alla macchinetta con cialde, la quantità di caffè non utilizzata rimane la stessa, se non di più. Molti non sanno che i fondi di caffè posseggono svariate qualità, tra cui:

– ottimo concimante per il terreno, ricco di azoto, calcio, magnesio e potassio;

– fertilizzanti per varie tipologie di piante;

– repellente per le lumache;

– completamente biodegradabile;

– repellente per gatti e cani;

Posando la nostra attenzione su queste caratteristiche nasce l’idea di  creare dei vasi in materiale biodegradabile che sostituiscano i contenitori di plastica per le piante.

In questo modo si eviterebbe lo shock che la pianta subisce a seguito della rinvasatura o della messa in terra, e il caffè contenuto nel materiale sarebbe di aiuto alla pianta durante buona parte della crescita. La sua biodegradabilità, inoltre, permetterebbe al vaso di uniformarsi al terreno circostante, senza alterarlo, evitando cosi la dispersione di vasi di plastica gettati poi nella spazzatura. Inoltre la scelta di utilizzare la cera d’api non è casuale: i primi esperimenti sono stati fatti utilizzando lo zucchero, che risultò non  sufficientemente “colloso” da unire insieme tutti e gli altri ingredienti. La cera, utilizzata per sostituirlo, conferisce un’aspetto più solido e resistente al vaso, dando la possibilità di aprire dei fori in qualsiasi punto del vaso per la fuoriuscita dell’acqua in eccesso e la traspirazione della pianta.

550x350-true-Tratta_da_Universo_Ecologico

INGREDIENTI

– Fondi di Caffè (2/4);                         – Carta di bamboo (o carta non stampata) (1/4);

– Cera d’Api non trattata (1/4);                – Forma / Vaso

IMG_0170

 

FASI DI PREPARAZIONE DEL GROFFEE

FASE 1

Disponendo di cialde per la macchinetta del caffè, le si apre e si preleva il contenuto.

Nel nostro caso le scelta delle cialde di marca Nespresso non è stata casuale: questa casa produttrice, infatti, offre la possibilità ai propri clienti di consegnare le cialde utilizzate nel punto vendita più vicino, così che possano essere lavate e riutilizzate sempre come cialde del caffè, invece che essere gettate nella spazzatura.

Copia di IMG_0107

FASE 2

In una ciotola si riducono in pezzi di piccole dimensioni i fogli di carta e li si mescola con i fondi di caffè. La quantità di acqua residua contenuta nei fondi di caffè aiuterà la carta ad unirsi ad essi, creando un unico composto.

IMG_0108 IMG_0111

FASE 3

Dopo aver fatto sciogliere in padella la cera d’api, senza portarla ad ebollizione , la si mescola al composto precedentemente ottenuto (l’aggiunta di questo materiale renderà il vaso impermeabile e più resistente).

IMG_0129 IMG_0112

FASE 4

A questo punto si può scegliere un vaso di una qualsiasi dimensione e forma, che fungerà da base per il calco. Si applica il Groffee lungo i lati e sulla base del vaso, pressandolo e compattandolo adeguatamente, e lo si lascia asciugare all’aria. Eventualmente, per essere sicuri che il calco abbia l’esatta forma del vaso originale, si può utilizzare un secondo vaso, identico al primo, posizionandolo all’interno di questo, di modo che il materiale sia bene fermo da entrambi i lati (utilizzando tra lo strato di materiale e il secondo vaso una pellicola trasparente si limitano al minimo le possibilità di rottura del Groffee solidificato).

IMG_0114 IMG_0126

Si otterrà così un vero e proprio “contenitore” al 100% biodegradabile e al 100% funzionale per la pianta che vi verrà inserita.

Espandendo la produzione di questo materiale su larga scala, sarà inoltre possibile riutilizzare anche e soprattutto i fondi di caffè prodotti nei bar e nei ristoranti, che rappresentano il maggior luogo di spreco di questo materiale.

IMG_0160 IMG_0158

 

 

La plastica: tipologie e tecnologie.

Un po’ di storia sulle materie plastiche.

                        ImmagineImmagine

Nel 1920 H. Standinger teorizza che la plastica è formata da polimeri costituiti di macromolecole.

Tra il 1920 e 1930 si formulano il Cellophane, ossia un film trasparente, il cloruro di polivinile PVC, materiale utilizzato per creare fili elettrici e tubi; segue la creazione del Nylon per le fibre tessili, le resine ureiche per la produzione di casalinghi, il Perpex metacrilato polimerizzato per lenti, occhiali e macchine fotografiche e il Polistirolo che è una resina polistirenica ad uso espanso per coibentazione di case, aerei e frigo.

Nel 1950 si procede con altre creazioni come la fibra tessile, utilizzata per tessuti elastici e calze da donna, denominata Lycra; il politetrafluoretene PTFE noto con il nome di Teflon, con il quale si attuano il rivestimento anti-aderente delle padelle.

Nel 1953 viene scoperto da K. Ziegler il Polietilene PE che ha ricevuto il Premio Nobel; segue nel 1954 l’assegnazione di un altro Premio Nobel a G. Natta per la scoperta del Polipropilene PP. In seguito, nel 1970 nascono i tecnopolimeri, speciali formazioni di plastiche con caratteristiche meccaniche e fisiche di altissimo livello.

La materia prima.  

Per quanto riguarda le materie plastiche, si considera ora la loro composizione, costituita da polimeri, macromolecole di sostanze organiche a elevato perso molecolare. I polimeri derivano da avviluppamenti chimici di un gran numero di piccole molecole di monomero del medesimo tipo.

Le sostanze naturali da cui derivano le materie plastiche, dopo apportuni processi, sono:

  • cellulosa (legno)
  • oli vegetali
  • mais e semi di soia
  • cereali

La maggior parte delle materie plastiche oggigiorno vengono prodotte da:

  • carbone
  • gas metano
  • petrolio

I polimeri. 

La trasformazione della materia prima avviene attraverso la polimerizzazione, che è il processo che permette di trasformare le materie prime in materie plastiche. Le materie prime vengono polimerizzate attraverso differenti procedimenti per ottenere materie plastiche sotto forma di granuli, pastiglie, polveri o liquidi. Le possibili polimerizzazioni sono: in massa, in soluzione, in sospensione e/o in emulsione.

                                          Immagine

Le materie plastiche di base prodotte dalla polimerizzazione sono commercializzate sotto molte forme a seconda dell’impiego successivo come :

  • granuli, polveri per stampaggio di oggetti
  • resine liquide, da accoppiare a cemento, fibra di vetro, fibra di carbonio
  • vernici
  • adesivi
  • film

I campi di applicazione dei polimeri sono svariati.

In edilizia li ritroviamo nelle finestre in PVC, tubi per l’impianto idraulico PVC, fili elettrici PVC, canaline elettriche PVC, materiali espansi per le casseforme PS, calcestruzzo con resine sintetiche, fogli per impermeabilizzare bacini, strade, fondazioni PVC, lastre per isolamento termico PE PS PUR.

                                   Immagine            Immagine

In packaging utilizzati per film PE- LLD, contenitori PS, PC, in bottiglie PET.

                                                                             Immagine

Nei mezzi di trasporto come spoiler, paraurti, parafanghi, cofani, portelloni PUR ( poliuretani ) RIM ( poliuretano rigido ), fari PC, camper, interni autobus, barche SMC, fibra di vetro impregnata con resina, parte di aerei, fibre di carbonio impregnate con resina.

Attualmente le materie plastiche costituiscono in media il 10% del peso di un auto ( 70-150kg) ma la percentuale è in aumento. Il 65% degli aerei di linea è costituito da materiali compositi rinforzati.

In elettronica si usano nei materiali isolanti Termoindurenti classici, PA (Nylon), PC (policarbonato), carrozzerie di computer, oggetti elettronici in genere, cassette VHS ABS (acrilonitrile-butadiene-stirene), PS (polistirene), PC (policarbonato).

In casa nei mobili PP (polipropilene), PU (poliuretano) lampade PC (policarbonato), PMMA (polimetilmetacrilato).

Immagine               Immagine                Immagine

Produzione e Consumi. 

Si considera ora alcuni dati Economici e Produzione in Europa.

Nel 2003 nel settore della plastica sono state impiegate 1.000.000 persone e sono state prodotte materie plastiche per circa 29 miliardi di euro e prodotte macchine per la lavorazione delle plastiche per 9 miliardi di euro.

Per quanto riguarda i consumi nel 2002 sono stati consumati 96,6 Kg di plastica procapite e nel 2003 Kg. 98 procapite.

Inoltre nel settore del Packaging  nell’anno 2003 14 milioni di tonnellate di materiale, nel settore auto 3 milioni di tonnellate.

Le materie plastiche sono suddivise in tre grandi famiglie:

  • materiali termoplastici
  • materiali plastici termoindurenti
  • materiali plastici elastomerici (elastomeri)

I materiali termoplastici rammolliscono ripetutamente con il calore sino a diventare scorrevoli e solidificano per raffreddamento, In seguito ad un processo di trasformazione (stampaggio) essi assumono cambiamenti di stato re ersibili.

Gli scarti di lavorazione derivanti dallo stampaggio possono essere rigenerati e possono essere riutilizzati.

Possono essere termoformati (vasche da bagno o le cassette della frutta) e saldati.

Altri materiali plastici sono termoindurenti derivano da prodotti macromolecolari che, reagendo fra di loro, formano macromolecole strettamente reticolate dal lato chimico.

Non sono reversibili per cui, una volta stampati e avvenuta la reazione chimica non sono più utilizzabili se non come carica (particelle aggiunte alle plastiche per modificare le caratteristiche meccaniche).

Non sono termoformabili e saldabili.

Ora considerando i materiali plastici elastomerici, (elatomeri) possiamo specificare che sono materiali che a temperatura ambiente hanno un comportamento gommoelastico, e che se sollecitati a trazione o co,pressione di deformano, e che una volta eliminata la forza ritornano all’entità originale ( come gli stivali di gomma, le suole di ulcune scrpe, i tappi non di sughero per il vino, o la parte plastica delle chiavi delle macchine).

Si tocca ora il campo degli agenti ausiliari dei quali molti manufatti stampati hanno bisogno per migliorare la resistenza al fuoco, la sicurezza, l’igiene nel settore alimentare, le caratteristiche mecccaniche, la stampabilità.

Il processo di produzione dei semilavorati e dei manufatti.

                                                   Immagine

  • coloranti: pigmenti organici ed inorganiciinsolubili che conferiscono il colore alla palstica, sono chiamati masterbatch
  • cariche: sono polveri (farine di legno), fibre (legno, vetro allumimio, carbonio, araldite),

            sferette di vetro, servono a risparmiare materiale, migliorare la lavorabilità e le caratteristi che meccaniche

  • agenti scivolanti e distaccanti: abbassano la viscosità delle masse plastiche, facilitano il distacco dagli stampi
  • agenti stabilizzanti: diminuiscono il degrado delle plastiche agli agenti atmosferici, ai raggi UV, all’ossidazione
  • agenti antistatici: impediscono alla plastica di attirare la polvere per effetto dell’eletricità statica
  • ritardi di fiamma: diminuiscono l’infiammabilità delle plastiche
  • agenti flessibilizzanti: migliorano la flessibilità delle plastiche fragili
  • agenti plastificanti : regolano la tenacità delle materie plastiche rigide

Seguono le tecnologie di lavorazione del materiale plastico.

Miscelazione.

I materiali termoplastici devono essere miscelati con agenti ausiliari. Alcuni esempi di apparecchi per la miscelazione della plastica con gli agenti ausiliari sono la dosatrice gravimetrica e dosatrice volumetrica.

Plastificazione dei polimeri. 

                                            Immagine

Le premiscele di granuli o polveri ed additivi vengono fuse e omogeneizzate mediante estrusori-omogeneizzatori. La massa fusa viene poi lavorata a caldo o a freddo.

Per quanto riguarda la granulazione a freddo, una volta estruso il materiale ed omogeneizzato esce dalla matrice e viene raffreddato in un bagno d’acqua ed essiccato prima di passare alla granulatrice, una taglierina che riduce l’estruso filare i granuli cilindrici.

Con la granulazione a caldo invece, la massa fusa ed omogeneizzata, viene tagliata in granuli appena esce dalla matrice di estrusione. I granuli vengono raffreddati in acqua subito dopo il taglio. In questo caso i granuli hanno forma sferica o lenticolare.

Lo stampo.

                                            Immagine

                                            ImmagineImmagine

Lo stampo è composto di una matrice, detta anche femmina e di un punzone, detto anche maschio. L’unione dei due pezzi genera la forma da dare all’oggetto da stampare.

Può avvenire uno stampo a iniezione dove la vite per iniezione introduce la materia plastica nello stampo, mentre il pistone idraulico, attraverso un meccanismo a ginocchio, tiene lo stampo chiuso: infatti l’iniezione della plastica avviene ad alta pressione e tende ad aprire lo stampo.

                                              Immagine

Lo stampo ad iniezione avviene in diverse fasi; nella prima fase vengono introdotti i granuli e gli agenti. La vite incomincia a girare miscelando i granuli, mentre le resistenze riscaldano il materiale.

                                                                          Immagine

Segue la seconda fase in cui la vite avanza e spinge la massa fusa nello stampo,quindi la vite senza fine spinge la massa fusa nello stampo attraverso il canale d’iniezione ed inizia lo riempimento dello stampo. Per l’elevata spinta, la macchina tiene chiuso lo stampo attraverso un pistone idraulico. Lo stampo è opportunatamente riscaldato per permettere un buon flusso della plastica sino a riempire tutta la figura. Si arriva così alla terza fase in cui la vite senza fine esegue una post compressione a pressione più bassa per compensare il ritiro ( la plastica fusa, una volta solidificata tende a ritirarsi, cioè a diminuire il suo volume): a questo punto la vite sospende la spinta e il pezzo si raffredda per qualche istante nello stampo in modo che la plastica si solidifichi completamente per permettere al pezzo stampato di uscire dallo stampo senza deformarsi. Con la quarta ed ultima fase, l’iniezione è completata, il manufatto si è raffreddato ed è diventato solido e così è possibile aprire lo stampo per l’estrazione del pezzo stampato.

                                                     Immagine

                                                     Immagine

                                                    Immagine

Estrusione.

                                                Immagine

In questo processo la massa fusa viene spinta dalla vite attraverso una matrice d’estrusione. Attraverso il processo di estrusione possono essere estrusi differenti profili. Il più interessante è il profilo cavo per cui l’estruso può essere svuotato creando un profilo resistente e leggero. Questa tecnica permette di estrudere profili a sezione cava utilizzando l’aria per svuotare il profilo. La linea completa di estrusione è composta dall’estrusione, da un’unità di classificazione granulometrica, da un’unità di raffreddamento per poi passare al taglio. I profilati di norma sono tagliati a 6 m per problemi di trasporto sui camion. I profilati sono di tre tipi, ossia profilati cavi, profilati aperti e profilati a barra piena.

Estrusione di film soffiato.

                                                          Immagine

Questo tipo di estrusione consente di produrre ad esempio i sacchi per rifiuti di colore nero. La linea di estrusione di film soffiato è costituita da un estrusore con matrice ad anello, un anello di raffreddamento ad aria, un dispositivo per il trascinamento del film e i rulli di avvolgimento del prodotto finale. Il tubo soffiato viene stirato sino a ¾ volte il diametro della matrice ad anello.

Estrusione di film piatto.

L’apparecchiatura per un film piatto contiene un estrusone con matrice piatta, rulli refrigeranti, dispositivo di taglio e unità di avvolgimento. La massa fusa che esce dalla matrice è pressata contro il primo rullo refrigerante mediante aria calda. Il raffreddamento è seguito dal taglio e dall’avvolgimento.

Estrusione su cavo o tondino metallico.

Il cavo di rame, acciaio o alluminio è trainato attraverso una matrice rotonda rotante e ricoperto di plastica. Dopo il raffreddamento viene avvolto il bobine per il trasporto. Con questa tecnica si producono cavi elettrici, reti per recinzioni, cavi per stendere la biancheria e tubi metallici.

Estrusione/soffiaggio.

                                          Immagine

Questo processo consente di produrre oggetti cavi come bottiglie e flaconi. L’unità è composta da due sezioni: la prima è un estrusore che genera il parison, uno sbozzato di forma cilindrica cavo all’interno.

                                               Immagine

Nella seconda sezione il parison passa nello stampo (nell’esempio di una bottiglia). Lo stampo della bottiglia è aperto per consentire al parison di entrare senza interferenza in quanto è allo stato plastico. Entrato completamente il parison, lo stampo della bottiglia si chiude bloccando la parte del parison che va a formare il collo e il sistema di chiusura della bottiglia ( chiusura a vite). Dopodichè dal collo della bottiglia viene immessa aria compressa che deforma il parison, facendolo aderire alle pareti dello stampo, prendendo la forma del medesimo.

                                          Immagine

La bottiglia è formata. Lo stampo si apre per permettere a due taglierine di asportare le parti di plastica in eccesso dal collo della bottiglia e per staccarla dal parison. Dopodichè la bottiglia esce dallo stampo.

                                                  Immagine

Questo processo avviene in due fasi. Nella prima fase viene stampato con la tecnologia dell’iniezione uno sbozzato, un corpo cilindrico della forma di una provetta da laboratorio, che ha già la filettatura per avvitare il tappo. Lo stampaggio ad iniezione dà la sicurezza di avere spessori costanti ed alta precisione nella stampa della filettatura. Per essere rilavorato lo sbozzato viene sottoposto a riscaldamento per rendere deformabile la plastica. Nella seconda fase lo sbozzato opportunamente riscaldato, viene inserito nello stampo con la figura da realizzare. Immettendo aria compressa all’interno dello sbozzato, questo si deforma fino ad assumere la forma dello stampo. Terminata la formatura, lo stampo si apre e viene estratta la bottiglia finita.

Con il processo di produzione monofase, la macchina plurifunzione è in grado di produrre bottiglie finite partendo dai granuli di plastica. Una pressa stampa gli sbozzati che poi vengono spostati nella stazione di preriscaldamento; nella stazione successiva gli sbozzati vengono trasformati nella forma definitiva e quindi avviati al riempimento. Queste macchine sono situate direttamente nelle fabbriche di imbottigliamento ( acqua minerale, cosmetici, detersivi, oli) per risparmiare il trasporto di oggetti vuoti e voluminosi a basso valore.

Per quanto riguarda il processo di produzione bifase invece, gli sbozzati sono prodotti da aziende specializzate. Gli sbozzati, essendo meno ingombranti del prodotto finale, sono trasportati nelle aziende di imbottigliamento che hanno una macchina che soffia il prodotto finito da avviare all’imbottigliamento.

Iniezione/stiro/soffiaggio.

Questo processo avviene in tre fasi; nella prima fase viene stampato con la tecnologia dell’iniezione uno sbozzato o parison, un corpo cilindrico della forma di una provetta da laboratorio, che ha già la filettatura per avvitare il tappo. Lo stampaggio ad iniezione da la sicurezza di avere spessori costanti ed alta precisione nella stampata della filettatura. Per essere rilavorato lo sbozzato viene sottoposto a riscaldamento per rendere deformabile la plastica.

Nella seconda fase lo sbozzato passa in un altro stampo dove, attraverso la pre-soffiatura, viene trasformato un una preforma. La preforma è una forma cava di dimensione intermedia rispetto alla forma finale. Nella terza fase la preforma, opportunamente riscaldata, viene introdotta nello stampo definitivo per il soffiaggio. Questa tecnologia viene utilizzata quando si devono stampare contenitori di una certa dimensione e si vuole controllare la dilatazione e quindi lo spessore della pareti dello stampo.

Termoformatura.

Questo processo prevede lo stampaggio di una lastra di materia plastica riscaldata. La astra, allo stato plastico, viene forzata sulle pareti dello stampo creando depressione attraverso una macchina per il vuoto. La lastra è ottenuta da un premilastra che, tenendo fermi i bordi, obbliga la medesima a deformarsi per assumere la forma dello stampo. Lo stampo ha una serie di fori per permettere all’aria aspirata dalla macchina del vuoto di passare. La lastra viene riscaldata da una piastra che sovrasta lo stampo. Terminato il riscaldamento, la macchina del vuoto aspira aria e costringe l lastra a deformarsi e a prendere la forma dello stampo. Il manufatto stampato deve poi essere rifilato ai bordi.

Trasformatura a stampo positivo.

               ImmagineImmagine

              Immagine

Questo processo inverte il concetto della trasformatura classica: invece di aspirare la lastra sullo stampo, in questo caso è lo stampo che sale ed aderisce alla lastra, la quale è stata opportunamente riscaldata e deformata. Nella prima fase la lastra viene riscaldata dal riscaldatore sovrastante.

Nella seconda fase viene insufflata aria attraverso i buchi dello stampo in modo da trasformare la lastra. Nella terza fase la tavola stampo sale e lo stampo si posiziona della deformazione della lastra. Nella quarta fase si inverte il flusso d’aria compressa: si crea il cosiddetto “effetto vuoto” per far aderire la lastra allo stampo.

Stampaggio rotazione.

ImmagineImmagine

E’ una tecnologia che permette di stampare oggetti vuoti all’interno, come ad esempio un pallone da calcio che è vuoto all’interno e non sarebbe stampabile con qualsiasi altra tecnologia. Inoltre si possono stampare manufatti di grosse dimensioni con stampi in lamiera o vetroresina ( resina e fibre di vetro) di costo contenuto. E? Una tecnologia lenta e non richiede impianti sofisticati.  

Il processo avviene in quattro fasi. Nella prima fase viene introdotto nello stampo il materiale da stampare (PET,PP) in polvere. Nella seconda fase lo stampo, montato su un braccio che ruota contemporaneamente secondo tre assi, viene posto in un forno. La temperatura scioglie la polvere portandola allo stato liquido: questa incomincia a scivolare su tutte le pareti dello stampo disponendosi uniformemente su di esse. Nella terza fase, quando il materiale ha ricoperto tutte le pareti dello stampo, questo viene tolto dal forno continuando a ruotare. Nella quarta fase, quando il pezzo stampato è completamente raffreddato, viene estratto dallo stampo. Nell’immagine si nota un impianto per lo stampaggio rotazionale a ciclo continuo. Mentre un braccio entra nel forno, l’altro ne esce e passa nella stazione di raffreddamento mentre un terzo porta lo stampo pronto per essere caricato di polvere.

Nelle immagini sottostanti si nota che sul braccio rotante si possono montare o un solo stampo se questo è di notevoli dimensioni, oppure fino a quattro stampi più piccoli, accelerando noteolmente i tempi di produzione.

Stampaggio per colata del Polluretano PUR.

Il PUR può essere stampato allo stato flessibile (imbottitura in genere) o rigido (carrozzerie). Inoltre lo si può stampare a bassa o ad alta pressione. Nel processo a bassa pressione, la testa di miscelazione (in rosso) viene accostata allo stampo per colorare il PUR. Il PUR nasce dalla miscela di resine termoindurenti denominate Isocinato e Poliolo.

Per colare il Poliuretano si utilizzano macchine che hanno un braccio molle che sostiene la testa di miscelazione: così è possibile iniettare il PUR in più stampi contemporaneamente muovendo solo la testa. Il PUR flessibile può essere stampato anche “autopellante o integrale”: il materiale iniettato crea una pelle, una finitura ad effetto pelle come nei braccioli delle portiere delle auto, nei volanti o delle sedie.

Stampaggio per colata del Poliuretano RIM (Reaction Injection Moduling)

Questo processo permette di utilizzare miscele liquide per un miglior riempimento dello stampo con pressione di riempimento bassa e quindi utilizzano stampi in alluminio. Si possono ottenere pezzi di grosse dimensioni e di ottima finitura.

Stampaggio per compressione.

Questa tecnologia vine utilizzata per le resine termoindurenti e gli elastomeri. La resina viene introdotta nello stampo preriscaldato. Il punzone chiude lo stampo per cui la pressione e la temperatura provocano la liquefazione della resina. In uno o due minuti si ottiene la completa reticolazione della resina, dopodichè il pezzo è pronto per uscire dallo stampo. Successivamente il manufatto deve essere sbavato, ossia l’asportazione della resina in eccesso ai bordi.

Stampaggio ad espansione.

                                                                      Immagine

Questa tecnologia serve a produrre materiali che hanno la capacità di espandersi: ad esempio il polistirene ( polistirolo espanso). Vengono immessi in uno stampo di alluminio granuli con agenti schiumanti che rilasciano CO2 se riscaldati. Nello stampo viene immesso vapore a pressione 3 atm. I granuli si espandono anche 20 volte il loro volume iniziale sino a saturare lo stampo.

Calandratura.

Con questo procedimento si ottiene film di PVC partendo dalla resina. Passando fra i rulli la plastica viene gradatamente assottigliata sino a raggiungere lo spessore di 1,2 mm. I rulli possono anche goffrare il film imprimendo un disegno.

                                                                        Immagine

 

Materiale di supporto: slide Prof. Carola Esposito Corcione.

Il cartone ondulato. Articolo a cura di Francesca Taurino ( con aggiunte di Valentina Dedonatis).

IL CARTONE ONDULATO.

Immagine ImmagineImmagineImmagine

Un po’ di storia.

Il cartone ondulato è stato inventato e brevettato a metà dell’800, e ha tutt’ora una diffusione e un impiego impensabile. “Fatto di carta”, ma tutt’altro che fragile, il cartone ondulato, in costante evoluzione qualitativa sia nelle prestazioni che nei servizi offerti, è sempre stato e continua ad essere professionista nella nostra quotidianità.Il suo utilizzo è stato sostanzialmente quello dell’imballaggio.

Nella sua forma più semplice è costituito da due superfici di carta piana dette copertine che racchiudono una carta ondulata e che si legano tra loro con l’utilizzo di collanti naturali.

L’azione combinata delle copertine con l’onda interna conferisce rigidità e resistenza all’insieme e ne determina l’efficacia nel confezionamento e nel trasporto delle merci.

In Italia sono prodotti ogni anno circa 6 miliardi di m² di cartone che si trasformano in circa 11 miliardi di scatole.

Per cosa è nato l’imballaggio in cartone ondulato.

La funzione principale dell’imballo sono quella della protezione, conservazione, trasportabilità dei prodotti, nonché, in molti casi, la frammentazione in confezioni e dosi adatte alla distribuzione e alla vendita al dettaglio per il consumo familiare e individuale.

C’è però un’altra funzione, la cui importanza è aumentata enormemente negli ultimi decenni e continua a crescere sotto la spinta del marketing e  della pubblicità: è la funzione “immagine”, ovvero che illustra, che promuove, che fa vendere il prodotto.

Com’è fatto?

Le caratteristiche del cartone ondulato sono strettamente legate alle caratteristiche delle singole carte che lo compongono. In questo senso possiamo distinguere le carte in due macro categorie: le carte da copertina e le carte per ondulazione.

E’ un materiale che si caratterizza per due fattori:

  • Leggerezza;
  • Resistenza alla compressione;

Un’altra caratteristica che merita di essere evidenziata è quella della “fonoassorbenza”.

 Le limitazioni.

Ci sono però altrettanti fattori che ne limitano fortemente l’impiego, in particolare:

  • Difficoltà a utilizzare il cartone ondulato in condizioni di umidità elevata o quando sia richiesta la “lavabilità” dei prodotti realizzati (esistono comunque in commercio cartoni ondulati resistenti a umido, i quali hanno subito trattamenti particolari che ne migliorano notevolmente le prestazioni);
  • Impossibilità di utilizzare il cartone ondulato per impieghi che richiedano particolari prestazioni di “reazioni al fuoco” (ad esempio arredi per edifici pubblici).

Per questo motivo non esistono in commercio prodotti realizzati con carte già “trattate”, e il trattamento fatto in seguito, sul prodotto finito, presenta particolari difficoltà, proprio per la struttura stessa del cartone ondulato. Inoltre, un eventuale trattamento con vernici speciali comprometterebbe una delle principali caratteristiche, vale a dire la riciclabilità del materiale.

Le onde.

A seconda del numero di onde si parla di:

  • ONDA SEMPLICE: 2 copertine e 1 onda;
  • DOPPIA ONDA: 2 copertine, 2 onde e un foglio teso frapposto tra le due onde;
  • TRIPLA ONDA: 2 copertine, 3 onde e due fogli tesi frapposti tra le tre onde.
  • Esiste anche l’onda nuda, un cartone nel quale manca la copertina esterna e in cui l’ondulazione rimane scoperta; solitamente questo tipo di cartone viene utilizzato nel settore cartotecnico, accoppiato con una carta patinata.

L’evoluzione delle onde. 

  Immagine

Classificazioni varie.

Le onde, inoltre, sono classificabili a seconda della loro altezza e quindi, a titolo esemplificativo, si possono avere onde alte, onde medie, onde basse e micro onde.

Ulteriore classificazione è quella delle copertine in base al tipo di carta utilizzata, con particolare riferimento alla composizione e alle caratteristiche meccaniche della stessa. Si possono avere quindi carte Kraft, Liner e Test.

Anche le carte per ondulazione sono classificabili a seconda delle caratteristiche meccaniche; sono identificabili carte semichimiche (S o SS) e Medium (M) o Fluting (F).

Si possono avere cartoni ondulati costituiti con carte prodotte sia da materiale riciclato sia con carte in fibra vergine. Il cartone può quindi essere costituito dallo 0% al 100% di materiale riciclato.

 

Carte per copertine.

Kraft: carta prodotta utilizzando un’elevata percentuale di fibre vergini di conifera; tipicamente  l’80%

Liner – Test: 100% di massa derivante da recupero con prestazioni differenziate.

Carte per ondulazione.

Tipo S: carte prodotte utilizzando un’elevata percentuale di fibre vergini di latifoglie; tipicamente maggiore al 65%.

Uso semichimica Medium o Fluting: carte prodotte utilizzando il 100% di materiale derivante da recupero, con prestazioni differenziate.

 

Prove sul cartone ondulato.

Suddivise per tipologia e per grammatura le carte che compongono il cartone, possiamo identificare e misurare le diverse caratteristiche del cartone ondulato per meglio rispondere alle diverse esigenze di impiego:

  • Grammatura del cartone: esprime il peso del cartone al metro quadrato; non sarà altro che la somma delle grammature delle copertine, più la grammatura delle onde (il peso al metro quadrato dovrà essere maggiorato secondo un coefficiente di ondulazione che varierà in base allo spessore ed al passo dell’onda) ed il peso dei collanti.
  • Spessore del cartone: misura la distanza in mm tra le due superfici esterne di un cartone ondulato.
  • Edge Compression Test (ECT): è una prova di compressione che si effettua su una striscia di cartone, volta a misura lo sforzo espresso in kN/m (nel sistema S.I.; si può ottenere comunemente anche il dato espresso in kg*cm) necessario per deformare la striscia stessa. Tale dato consente di confrontare i vari cartoni ondulati rispetto alla loro resistenza alla compressione ed è strettamente correlato con la resistenza all’impilamento degli imballi relativi.
  • Resistenza allo scoppio: misura la resistenza alla perforazione di una cartone ondulato. Si esprime in kPa nel sistema S.I. (o più comunemente in kg/cm²) ed è la misura della resistenza alla rottura di un cartone sottoposto ad una pressione in senso ortogonale alla sua superficie.
  • Box Compression Test (BCT): misura la resistenza di una scatola di cartone ondulato vuota alla compressione verticale, ovvero quanti chilogrammi può portare una scatola prima di schiacciarsi. Questo dato è fortemente correlato con quello di ECT del cartone che compone l’imballo.
  • Assorbimento d’acqua (COBB): misura in gr/m2 la quantità di acqua distillata che viene assorbita da un determinato cartone sottoposto ad una pressione di colonna d’acqua di 1 cm in un determinato intervallo temporale. Il dato che si ricava può essere utile sia per eventuali considerazione sulla stampa (dato che i colori nella stampa flexo sono a base acqua), sia nell’impiego del cartone in ambienti umidi (es. celle frigorifere o cantine).

Macchinario per stampaggio.

Immagine

Immagine

 

Inconvenienti più diffusi nella fabbricazione del cartone ondulato.

La fabbricazione del cartone ondulato è strettamente legata al livello tecnologico del macchinario impiegato nonché alla qualità della materia prima utilizzata (la carta in bobine) ma dipende anche dall’abilità e dall’addestramento degli addetti al funzionamento dell’ondulatore. Gli inconvenienti più comuni sono:

  • Cartone prodotto con onda schiacciata o inclinata;
  • Cartone non planare o incurvato;
  • Copertine non incollate o danneggiate;

Il cartone ondulato è riciclabile e biodegradabile al 100%. Il riutilizzo del cartone permette non solo un notevole risparmio economico ma garantisce anche il rispetto dell’ambiente riducendo notevolmente il volume dei rifiuti che giungono in discarica. In Italia circa l’80% della fibra impiegata per la produzione del cartone ondulato deriva da materiale di riciclo detto macero e solo il 20% della fibra impiegata è fibra vergine proveniente da foreste ma sempre gestite secondo criteri di sostenibilità ambientale dall’industria cartaria stessa. Con il riutilizzo le fibre di cellulosa tendono a perdere le prestazioni originarie pertanto il ricorso alla fibra vergine è comunque necessario per garantire lo standard prestazionale anche delle carte più povere. Occorre ricordare, inoltre, che il cartone per uso alimentare impiegato a contatto diretto con alimenti deve essere prodotto con carte di pura cellulosa e senza contenuti di macero come previsto dal Decreto Ministeriale del 21 marzo 1973 e successive modifiche (esempio tipico il cartone per le pizze).

Con l’introduzione delle nuove normative legate al settore imballaggi, il cartone ondulato si è confermato come un materiale ecologico e molto adatto per l’imballaggio. I collanti sono ormai tutti naturali derivati da amido di mais o fecola.

Trasformato in imballaggio finito, il cartone ondulato diventa un contenitore robusto, versatile, ideale per raggruppare, trasportare e proteggere i prodotti in esso contenuti. Il modello di scatola più comune e più utilizzato per le sue doti di economicità di produzione e versatilità nell’utilizzo è senza dubbio la scatola americana.

Tornitura in lastra / Metal spinning

La tornitura in lastra, in inglese detta metal spinning, è un processo di lavorazione dei metalli mediante il quale un disco o un tubo di metallo viene ruotato ad alta velocità grazie ad un tornio e formato mediante appositi utensili manuali oppure a controllo numerico computerizzato.

Tornitura a mano con utensili

Tornitura CNC

La Tornitura in Lastra, è nata con l’intento di investire minor tempo e risorse nello stampaggio di prodotti, di forma cava e complessa, con costi contenuti, e con un ottimo standard di qualità. Con la tornitura in lastra è possibile realizzare prototipi di prodotti complessi, per verificarne il funzionamento o simularne le operazioni di assemblaggio. Con l’utilizzo di un semplice stampo opportunamente sagomato e di un utensile a rullo e/o palo, e la minimizzazione dello sfrido (scarto dovuto al taglio del disco), si conferisce una notevole importanza economica ai prodotti ottenuti.

Prodotti in tornitura da lastra di metallo

Gli artigiani utilizzano il processo per la produzione di dettagli architettonici, illuminazione di specialità, prodotti per la casa e decorativi ed urne. Le applicazioni commerciali includono pentole, coperchi, bombole del gas, campane e contenitori di rifiuti pubblici. I metalli ai quali si può applicare questa tecnologia di lavorazione sono tutti quelli duttili, come: alluminio, acciaio inossidabile e ottone.  Il diametro e la profondità di parti formate hanno come unico limite le dimensioni delle apparecchiature disponibili.

Tecnologia dei materiali a memoria di forma

I materiali a memoria di forma rappresentano una classe di materiali metallici dalle inusuali proprietà meccaniche. In particolare la loro caratteristica principale è quella di essere in grado di recuperare una forma macroscopica preimpostata per effetto del semplice cambiamento della temperatura o dello stato di sollecitazione applicato.

CENNI STORICI
La prima scoperta del fenomeno “shape memory” risale al 1932 grazie agli studi di Chang e Read: essi notarono la reversibilità della trasformazione nella lega AuCd tramite osservazioni metallografiche e variazioni nella resistività.
Solo nel 1962 l’effetto fu scoperto nella lega NiTi ad opera di Buehler, e fu da allora che iniziò la ricerca vera e propria sulla metallurgia e le applicazioni pratiche di questa classe di materiali.
Successivamente furono analizzate molte altre leghe che presentassero le proprietà “shape memory” ma tra tutte, le più interessanti ed utili dal punto di vista applicativo si sono rivelate quelle del gruppo NiTi e le leghe del Cu.
titanio
reme
nikel

CARATTERISTICHE MATERIALI MEMORIA DI FORMA
Questi materiali rappresentano una classe di materiali metallici dalle inusuali proprietà meccaniche. In particolare la loro caratteristica principale è quella di essere in grado di recuperare una forma macroscopica preimpostata per effetto del semplice cambiamento della temperatura o dello stato di sollecitazione applicato.
Inoltre è presente una trasformazione di fase a stato solido che prende il nome di trasformazione martensitica termoelastica. Tra le numerose proprietà di questa trasformazione una appare particolarmente utile ed è quella legata alla particolare struttura cristallina della fase ultima (detta appunto martensite). Essa consiste in una fitta disposizione di piani cristallini specularmene disposti l’uno rispetto all’altro e dotati di un’elevatissima mobilità relativa.
2
Un ulteriore interessante proprietà delle trasformazioni martensitiche termoelastiche è legata alla possibilità di far avvenire la trasformazione non solo variando la temperatura ma anche mediante l’applicazione di un opportuno stato di sollecitazione in condizioni adeguate di temperatura.
Nel corso della deformazione imposta il materiale forma progressivamente la struttura martensitica e questa istantaneamente si deforma permettendo di nuovo di accomodare grandi deformazioni senza danneggiare in maniera permanente la struttura cristallografica del materiale.
Tale procedura viene condotta in un intervallo di temperature in cui la martensite formatasi non potrebbe esistere nel momento in cui la forza esterna viene rimossa, essa si trova in una condizione di instabilità termodinamica e tende a ritrasformarsi istantaneamente promuovendo un immediato recupero di forma prescindendo quindi dalla fase di riscaldamento.
3SMAEffetto%20memoria%20di%20forma
Quello che succede fenomenologicamente è che il materiale recupera immediatamente la forma iniziale dando l’impressione di una notevole elasticità. A tale proprietà si dà il nome di superelasticità in quanto l’effetto complessivo è quello di un materiale che accetta notevoli deformazioni ed immediatamente recupera la sua forma iniziale. Questa proprietà dei materiali a memoria di forma ha trovato diverse applicazioni anche grazie alla maggiore semplicità di impiego che prescinde dalla necessità di riscaldare e/o raffreddare il materiale.
345

LEGHE Ni-Ti
Le più importanti e diffuse tra le leghe a memoria di forma sono senz’altro quelle che contengono il composto binario intermetallico NiTi, a cui è possibile addizionare molti elementi in lega al fine di modificare le proprietà comportamentali del sistema, a seconda degli scopi previsti. Altri elementi usati comunemente sono: ferro e cromo per abbassare la T di trasformazione.
La classica stechiometria delle leghe NiTi prevede circa uguale quantità di Ni e Ti: tale lega è nota come “NITINOL” e possiede ottime proprietà sia di memoria di forma che di superelasticità.
Tale composto possiede inoltre le caratteristiche tali da poter essere attivato elettricamente per effetto Joule: ovvero quando una corrente elettrica lo attraversa, si genera sufficiente calore da indurre la trasformazione di fase.
8
COME VENGONO LAVORATI I MATERIALI Ni-Ti
I materiali NiTi vengono sottoposti a lavorazioni a caldo (forgiatura, laminazione a caldo, ecc.) seguite da una serie di trattamenti a freddo e, successivamente, ancora a caldo (ciclo termico) variabili a seconda degli scopi che si vogliono perseguire: miglioramento della deformabilità della fase martensitica, maggior resistenza della fase austenitica, grado di superelasticità, conferimento e recupero di una forma (parziale o totale), meccanismo di memoria di forma a due vie, proprietà delle superfici. Molto spesso è necessario conferire una forma particolare ai pezzi in NiTi. In pratica si forza il pezzo in uno stampo della forma desiderata e si procede con il trattamento termico. In generale sono sufficienti temperature di circa 400°C e pochi minuti per impostare una forma; si procede con un raffreddamento rapido tramite tempra in acqua o in aria.
7
PROGETTO ESEGUITO CON LEGHE Ni-Ti
Proposta: realizzazione di frangisole a movimento termico, cioè capaci di cambiare orientamento a seconda della temperatura assorbita. Lo schema tecnologico è molto intuitivo e ed estremamente efficace: si compone di un telaio metallico su cui sono fissate due molle in lega di Ni-Ti, la molla A e la molla B (vedere figura). La molla superiore (A) subirà una trasformazine martensitica termoelastica mentre la molla inferiore (B) si trova nell’intervallo di temperatura in cui acquista la proprietà di superelasticità. Alle due molle è fissato un frangisole che è libero di muoversi per mezzo di una cerniera (vedi figura).
9
10
PRIMA FASE
Ci troviamo ad una temperatura inferiore ai 40 gradi. La molla A si trova al di sotto della sua temperatura di recupero di forma e viene deformata dalla molla B che, trovandosi nella condizione di superelasticità, mantiene la forma stabilita dallo stampo di fabbricazione. La situazione (vedi figura) è che il frangisole assume una posizione orizzontale, la molla che garantisce questa configurazione è la B.
SECONDA FASE
Arriviamo ora a 40 gradi. La molla A subisce la trasformazione martensitica e comincia il recupero della forma stabilita nella fase di fabbricazione. Facendo ciò incomincia ad esercitare una forza sulla molla B che, essendo di sezione minore, comincia lentamente a deformarsi trovandosi nella fase austenitica. La situazione (vedi figura) è che il frangisole assume una posizione inclinata con un angolo che decideremo in funzione della posizione geografica dell’allestimento. Tutto verrà realizzato semplicemente modificando lo stampo della molla A.
RITORNO
Con il riabbassarsi della temperatura la molla A perde di nuovo la sua forma sotto l’influsso della spinta della molla B. Il frangisole ritorna nella posizione orizzontale.
11
STUDI E PROPOSTE SULL’UTILIZZO DEI MATERIALI A MEMORIA DI FORMA
PROGETTO NANOTECH
Il progetto NAIMO prevede bottiglie “intelligenti” che avvertono il consumatore sul loro contenuto, abiti con chip che monitorano la salute, schermi flessibili per apparecchi informatici, che si arrotolano e stanno in una borsa.
Naimo ha l’obiettivo di sviluppare materiali organici intelligenti e processi di fabbricazione accuratissimi, ma al tempo stesso semplici, economici e a basso impatto ambientale;questo studio verte alla realizzazione di dispositivi elettronici ed opto-elettronici, circuiti, memorie e nuovi materiali nanostrutturati funzionali.
12
I TRASPORTI DEL FUTURO
Nell’era dell’informazione, le tecnologie che trasformano la nostra esistenza non sono la tecnica dei razzi e l’astronautica, ma i microcircuiti e i software: le attività spaziali recitano solo una parte secondaria. Il volo spaziale muterà nel prossimo secolo, ma la tecnologia è già abbastanza avanzata da permetterci di fare supposizioni su dove si arriverà entro il 2100. Per i veicoli spaziali sono stati proposti svariati sistemi di propulsione, cinque dei quali – nucleare, solare, laser, con acceleratori a vela solare e a presa dinamica – rappresentano grandi promesse tecnologiche.
Nello spazio la propulsione solare sarà vincente perché permette di spingersi tanto lontano, per velocità, efficienza ed economia, quanto è consentito dalle leggi della fisica. Quelli solari sono motori economici e universali, adatti al trasporto di carichi in tutto il sistema solare (anche se presentano dei limiti). Questa flessibilità non significa che gli altri sistemi di propulsione non saranno necessari. Per lanciare veicoli nello spazio avremo ancora bisogno di propulsori chimici o razzi ad alta spinta più efficienti.15
MEDICINA
La terapia genica costituirà la rivoluzione del futuro, giacché l’introduzione di geni selezionati nella cellula del paziente potrebbe curare o alleviare la stragrande maggioranza delle malattie, comprese molte di quelle che finora hanno resistito a ogni tipo di trattamento.
La ricerca vuole introdurre i geni correttivi dentro cellule danneggiate, i ricercatori hanno sviluppato diversi metodi per il trasporto del materiale genetico. Per il prossimo decennio è probabile che l’introduzione di geni selezionati sia realizzato soltanto su cellule somatiche, che rappresentano tutti i tipi cellulari eccettuati gli spermatozoi, le cellule uovo e i loro precursori; l’alterazione genetica delle cellule somatiche interessa soltanto il paziente soggetto al trattamento.13
ENERGIA SOLARE
Le proiezioni indicano che per il 2025 la domanda mondiale di combustibile e di elettricità aumenterà notevolmente.
Una tecnologia solare più sofisticata e più diffusa avrà un impatto benefico rendendo meno gravosi i problemi dell’inquinamento atmosferico e del cambiamento climatico globale. Le tecnologie solari potrebbero consentire ai paesi in via di sviluppo di saltare una generazione di infrastrutture e di acquisire direttamente una risorsa che non contribuisca al riscaldamento globale o che non provochi in altro modo compromissioni ambientali.
I paesi sviluppati, dal canto loro, potrebbero trarre vantaggi dall’esportazione di queste tecnologie. Le tecnologie solari avanzate necessiteranno di aree meno estese di terreno rispetto alle coltivazioni di biomassa: la fotosintesi cattura normalmente meno dell’1% della luce solare disponibile, ma le moderne tecnologie solari sono in grado, almeno in laboratorio, di raggiungere efficienze del 20-30%. Con efficienze simili, un paese come gli Stati Uniti potrebbe soddisfare la sua attuale domanda energetica dedicando alla raccolta di energia solare meno del 2% della sua superficie.16

Trattamenti di protezione e finitura dei materiali

 

Introduzione

Gli agenti atmosferici nel loro complesso, come temperatura, umidità, irradiamento solare, gas presenti nell’aria, riescono ad aggredire l’integrità dei materiali.

Da qui deriva la necessità di proteggerli da queste aggressioni, e quando possibile, ed economicamente conveniente, anche la necessità di rendere questa protezione appagante dal punto di vista estetico.

Ma non solo, spesso le caratteristiche di alcuni di questi trattamenti sono finalizzate a scopi funzionali e prestazionali differenti, specialmente in campo strumentale elettronico e medicale.

Trattamenti di protezione e/o finitura su materiali metallici

La maggior parte dei trattamenti che si rivolge a materiali di tipo acciaioso, appartenenti cioè alle leghe ferro/carbonio.

1 I trattamenti di protezione e/o finitura praticati con riporto – trasferimento di metalli nobili e/o pregiati su acciaio.

Possiamo ulteriormente suddividere questa prima categoria in sottogruppi, a seconda dello scopo

specifico del trattamento:

1.1 Trattamenti di sola protezione, per la maggior parte eseguiti con processi di galvanotecnica.

Galvanotecnica processo mediante il quale si applica la galvanostegia.

Galvanostegia = Rivestimento di oggetti metallici con uno strato di altro metallo (doratura – argentatura, nichelatura), eseguito allo scopo di migliorare le qualità estetiche e la resistenza alla corrosione; l’oggetto viene fatto funzionare da catodo (-), l’anodo (+) della cella elettrolitica è il metallo ricoprente e la soluzione contiene un sale dello stesso metallo.

Zincatura a caldo, per immersione in zinco fuso (lo zinco fonde a ~650°c)

Zincatura a freddo

Profilati e tubi per carpenteria pesante, griglie presaldate, cancellate, particolari di medie/grosse dimensioni che richiedano una grossa capacità di protezione.

zincatecat_2_1350749440  zincatura

Nichelatura

Bulloneria e viteria tecnica, organi meccanici soggetti ad usura, alberi a gomito-bielle-supporti ecc..

 nichel4 nichelatura-(3)

Cadmiatura

Bulloneria e viteria tecnica, organi meccanici sollecitati ad usura per sfregamento, organi di macchine operanti in ambienti umidi ecc.

aaa_zincatura

1.2 Trattamenti di protezione e finitura

Nichelatura bianca e nera

Cadmiatura lucida

Cromatura lucida o mat (meno utilizzata)

Estremamente in uso in passato in campo automobilistico per finiture esterne.

Attualmente molto in uso su moto di media/grossa cilindrata – rubinetteria (specialmente in ottone)

Una buona cromatura su materiali acciaiosi è normalmente preceduta da una ramatura, seguita poi da una nichelatura.

866797801DSC02171

Argentatura

Oltre che in gioielleria, utilizzata in articoli casalinghi e praticata su supporti in acciaio inox

(posaterie, vassoi, caraffe, coppe ecc).

argentatura  imgres

Doratura

Sopratutto utilizzata in gioielleria, viene spesso sovrapposta a supporti in argento.

imagesimgres-1

1.3 Trattamenti di protezione e finitura per miglioramento di performance tecniche evolutive

Come la conduttività elettrica, la resistenza chimica, l’inossidabilità, le capacità anallergiche.

Questi trattamenti possono essere eseguiti per galvanotecnica, per fusione, per stratificazione di film, rivestimenti sotto vuoto, serigrafie, e si rivolgono a settori industriali come l’elettronica, il campo elettromedicale, la strumentazione chirurgica.

I supporti su cui questi trattamenti vengono eseguiti, spesso non sono solo più metallici, ma possono essere materiali diversi come: silicio (es. microprocessori), compositi stratificati (es. circuiti elettronici), fogli in materiali plastici (es. analiti chimici), ceramica (es. circuiti elettronici sensoristica automotive).

-Eseguibile per fusione abbiamo:

Stagnatura applicata per il rivestimento di fili e cavi in rame

Nella circuiteria elettronica per l’ancoraggio dei componenti.

-Eseguibili per galvanotecnica, ma anche per deposito di film, per rivestimenti sotto vuoto, processi serigrafici abbiamo:

Ramatura

Applicata a circuiteria elettronica e come supporto conduttivo per successivi depositi di metalli pregiati.

Argentatura

Per elettronica, per assemblaggio di microcip, per settore dei connettori e per sensoristica chimica.

Doratura

Per costruzione di microcircuiti e per microconnettori, per connettori ad alte prestazioni, per rivestimenti protettivi nell’industria spaziale.

Platinatura

In medicina chirurgica per strumentazioni anallergiche; nella sensoristica chimica ecc..

 microprocessore-con-memoriaImage2 $(KGrHqZ,!noF!Odv)g-kBQUeQ0Zo1g~~60_35

1.4 Trattamenti di sola finitura (Eseguiti per galvanotecnica)

Ottonatura lucida

Utilizzata nel settore maniglieria, rubinetteria e a scopo decorativo in articoli casalinghi

Bronzatura

Utilizzata nel settore funerario, e nel settore maniglieria. 

imgres-1 imgres MT308514

2 I trattamenti di protezione ed in alcuni casi di finitura eseguiti conprocessi chimici

Anche in questo caso è conveniente suddividere questa categoria secondo il supporto sul quale il trattamento viene eseguito.

2.1 Trattamenti di sola protezione eseguiti su metalli acciaiosi (leghe Ferro/Carbonio). 

Nitrurazione

Trattamento a caldo degli acciai con ammoniaca gassosa per indurirne la

superficie, utilizzata nel settore automotive come pretrattamento alla verniciatura.

Fosfatazione

Formazione per attacco chimico di un rivestimento protettivo realizzata immersione in un bagno di fosfato di zinco o di manganese.

Utilizzata nel settore automotive come pretrattamento alla verniciatura.

Brunitura

Eseguita mediante aggressivi chimici; rende le superfici bruno scuro, dalla corrosione.

Eseguita essenzialmente in bulloneria – e nel settore delle armi sportive.

Schermata 2014-04-29 alle 11.34.53 Schermata 2014-04-29 alle 11.35.11

2.2 Trattamenti di protezione e finitura eseguiti su alluminio

L’alluminio è un materiale che esposto agli agenti atmosferici crea superficialmente una patina di ossido che finisce col proteggere i sottostanti strati di materiale dagli stessi agenti ossidanti.

Anodizzazione o Ossidazione anodica.

Reazione chimica durante la quale un elemento A (per es. alluminio) perde elettroni (si ossida ed aumenta il proprio stato di ossidazione) mentre contemporaneamente un elemento B (sali minerali) acquista elettroni (si riduce e diminuisce il proprio stato di ossidazione).

L’ossidazione anodica sfrutta artificialmente questa caratteristica, che essendo attivata attraverso un processo chimico, ci consente anche di aggiungere il colore e quindi l’aspetto superficiale.

L’ossidazione anodica può essere lucida o mat (opaca)

I colori a disposizione sono: alluminio naturale champagne-similoro-bronzo-canna di fucile (bruno/pavonado)-verde-rosso-viola-nero.

2.3 Trattamenti di sola finitura eseguiti su acciaio inox

Ad imitazione della ossidazione anodica, è possibile colorare alcune leghe di acciaio inox.

In questo caso naturalmente i colori sono una componente solamente estetica e essa può essere eseguita in bagno totale o per parzializzazione con serigrafie di protezione.

anodizzazione _lucida_1anodizzazione-alluminio

3 I trattamenti di finitura superficiale che utilizzano sistemi meccanici divario tipo per essere eseguiti

Anche gli scopi di questi trattamenti sono diversi ed in alcuni casi possono essere effettuati anche su

materiali non metallici, come per esempio vetro, ceramica. Divideremo quindi questa categoria in due gruppi di trattamenti.

3.1 Trattamenti di finitura non utilizzati per scopi estetici

Burattatura

Può essere eseguita a secco od a umido, si usano generalmente abrasivi di forme diverse (tetraedri, cubi, sferoidi) e di dimensioni diverse, proporzionate alle dimensioni dei pezzi da trattare.

Si esegue generalmente su pezzi provenienti da fusione o da lavorazioni su macchine automatiche e serve ad eliminare bave di lavorazione, ammorbidire gli spigoli, sgrassare ed eliminare impurità superficiali.

L’aspetto dei pezzi trattati è opaco e privo di geometrie superficiali.

Sabbiatura

Viene eseguita a secco con sabbie di diversa granulometria.

La si utilizza sia su materiali metallici sia su materiali diversi, come vetro, ceramica, materiali lapidei (marmi pietre).

Per i materiali metallici viene eseguita con scopi simili alla burattatura.
Per gli altri materiali questo trattamento viene utilizzato come trattamento di finitura conscopi estetici.
Le superfici dei pezzi trattati hanno un aspetto opaco polveroso con geometria omogenea.

6 download sabbiatura-facciate-2

3.2. Trattamenti di finitura con scopi estetici

Pallinatura

Simile alla sabbiatura, utilizza microsfere di materiali duri.

Viene eseguita esclusivamente su materiali metallici ed è molto utilizzata su preziosi.

Le superfici dei pezzi trattati hanno un aspetto opaco lucido con geometria.

metalli omogenea.

shot-peening6

Lucidatura

Viene eseguita generalmente attraverso due o più passaggi di spazzolatura.

Le spazzole sono generalmente dischi in panno su cui vengono spalmati abrasivi estremamente fini amalgamati con paste denso/cremose.

Viene eseguita principalmente su alluminio (illuminotecnica), ottone (accessori per mobili, maniglie), acciaio inox (casalinghi), metalli preziosi(gioielleria).

napoli-afb-carrozzeria-lucidatura-auto-sconto30-560-Wdettaglio3

Brillantatura

Si esegue generalmente su alluminio in lastra (usando leghe molto pure) previa anodizzazione.

L’aspetto è specchiante e l’utilizzo principale è nel campo illuminotecnico.

E’ possibile anche ottenere una brillantatura su particolari eseguiti con la lega Paraluman, che assume un aspetto simile alla cromatura (è necessario proteggere questo trattamento con vernici trasparenti).

img-brillantatura-1

4 La verniciatura

Per importanza d’uso ed applicativa è sicuramente il trattamento di finitura più diffuso ed esteso ai più svariati tipi di supporto, dai materiali metallici sino ai materiali inerti (muri/pareti), considerando però che per ogni materiale esistono una o più tipologie di prodotto verniciante e di modalità di impiego assai differenziate.

Partendo da questa considerazione, analizzeremo la verniciatura classificandola per tipologia di supporto:

La verniciatura su metalli ferrosi

E’ essenzialmente un trattamento di finitura estetica, che deve essere sempre preceduto da un trattamento di protezione, che può essere chimico o che, previa pulitura e sgrassatura, può essere eseguito con i wash-primer (vernici chimicamente antiossidanti)

Vernici a polvere oggi tra le più diffuse, sono costituite da pigmenti (prevalentemente di origine poliuretanica) polverosi in grado di ricevere una carica elettrica (negativa) dal sistema di spruzzatura che funziona da anodo, mentre il metallo viene attivato elettricamente come catodo (positiva).

Economicamente valide per la possibilità di recupero dei pigmenti non utilizzati. Richiedono un trattamento termico (~120°C) per permettere la polimerizzazione dei pigmenti che formeranno una pellicola continua.

Possono avere aspetto lucido (senza raggiungere la brillantezza delle vernici liquide) od opaco (satinato, goffrato, buccia d’arancio).

Vernici liquide che possono raggiungere granulometrie estremamente fini, hanno pigmenti che sono sospesi in un liquido di trasporto, che può essere a base di solventi (oggi sempremeno utilizzati per problemi di inquinamento) o comunque sostanze facilmente volatili ed ultimamente anche acqua.

In alcuni casi, anche queste possono avere cariche elettriche per facilitarne l’utilizzo, ma non è mai possibile il recupero del materiale volatile non utilizzato.

Richiedono sempre un ciclo termico di asciugatura (~60°÷120°C).

Sono sopratutto utilizzate per la loro brillantezza nelle verniciature lucide, ma possono essere anche opache con vari gradi di finitura.

Vernici metallizzate

Vernici porcellanate

Schermata 2014-04-29 alle 12.12.17 Schermata 2014-04-29 alle 12.12.33 Schermata 2014-04-29 alle 12.12.41 vernici smalti IMG_3984

Trattamenti di protezione e/o finitura su materie plastiche

Il colore è componente materica del materiale plastico stesso, questa è una delle caratteristiche principali del loro successo.

Un’altra è la capacità di copiare perfettamente la finitura applicata allo stampo, si possono così ottenere:

Superfici lucide brillanti

(elettrodomestici di piccolo taglio-casalinghi, cosmesi)

Superfici opache con vari gradi di opacità

(strumentazione tecnica-PC-ecc..)

Superfici lavorate a similpelle od a finiture su disegno specifico

(cruscotto auto-volante, cosmesi)

Superfici metallizzate o con effetti speciali ad interferenza colorimetrica

(campo automobilistico, telefonia mobile, strumentazione high-tech)

Schermata 2014-04-29 alle 12.19.21 Schermata 2014-04-29 alle 12.19.31 Schermata 2014-04-29 alle 12.19.42 Schermata 2014-04-29 alle 12.19.50

 

Lampade per coltivazione indoor (a cura di Marco Boccellato, con aggiunte di Jonni Bongallino)

La coltivazione indoor consiste nel far vivere e crescere in un ambiente chiuso, come può essere una casa, delle piante. La coltivazione indoor si divide in tre diverse scuole: Coltivazione in Terra, Idroponica e Aeroponica; nelle quali cambia sostanzialmente la base dalla quale la piante attinge i propri nutrimenti.

31Kekkila_iso

L’elemento che accomuna tutte le coltivazioni indoor è l’illuminazione, costituito da lampade studiate appositamente per emettere raggi luminosi favorevoli allo sviluppo della vegetazione.

Queste lampade hanno il difetto di consumare notevoli quantità di energia e per questo motivo consiglio di rivolgersi alla generazione di lampade per coltivazione a risparmio energetico.

Le lampade da coltivazione standard (NON a risparmio energetico) sono le lampade HPS (High Pressure Sodium) appartengono alla categoria delle lampade a scarica, o lampade a luminescenza ad alta intensità (HID).

Queste lampade si basano sull’emissione di radiazioni elettromagnetiche da parte di un gas ionizzato. Questo processo avviene attraverso la produzione di una scarica elettrica.
Sono formate da un’ampolla di quarzo nel quale è contenuto il gas, che in realtà è il vapore di un elemento solido o liquido (come il sodio nel caso dell’HPS). La luce prodotta da questo tipo di lampade è di colore chiaro, ma tendente al giallo con elevati valori di rosso (circa 2500 gradi kelvin) ed hanno una vita di oltre 1500 ore.

Le lampade CFL invece, sono fluorescenti esattamente come quelle non specifiche per coltivazione.

La lampada fluorescente è una lampada a scarica in cui l’emissione luminosa è indiretta, perché l’emittente non è il gas ionizzato, ma un materiale fluorescente.

$T2eC16d,!)8E9s4l8hl4BSSsbLkKcw~~60_35

A differenza di una lampada a incandescenza, quella a fluorescenza non può essere collegata direttamente alla rete, perché la lampada deve essere alimentata in limitazione di corrente e occorre una sovratensione che agevoli l’innesco. Per questo motivo si pone in serie alla lampada un dispositivo ad hoc, di norma un induttore (chiamato anche reattore).

Pro e contro

Le lampade fluorescenti hanno una vita media maggiore rispetto a quelle a incandescenza, ma la loro durata può essere fortemente influenzata dal numero di accensioni e spegnimenti, a meno che non si usi un pilotaggio elettronico: ognuna di queste operazioni, infatti, riduce la vita della lampada, a causa dell’usura subita dagli elettrodi per il maggior numero di preriscaldamenti richiesti. Il valore fornito dalle aziende produttrici è generalmente calcolato con cicli di accensione di 8 ore e va dalle 12-15.000 ore delle lampade tubolari alle 5-6.000 ore delle lampade compatte.
Il pilotaggio elettronico, invece, grazie al preriscaldo controllato dei catodi (elettrodi), ne ritarda il danneggiamento, consentendo un numero di accensioni praticamente infinito (oltre 60.000) e la precisione del controllo ne estende la vita ad almeno 10.000 ore. A differenza delle lampade a incandescenza, queste lampade perdono leggermente in quantità di flusso luminoso emesso nel corso del tempo, inoltre per i modelli meno recenti (con il preriscaldo non controllato, ad esempio quello a risonanza capacitiva) di lampade compatte possono impiegare generalmente qualche minuto per arrivare al massimo di emissione possibile dopo l’accensione.

Le lampade CFL sono adatte per piccoli spazi in quanto emettono luce non troppo intensa. Queste lampade non producono troppo calore quandi normalmente si installano a pochi centimetri sopra la cima delle piante in modo da limitare al massimo la dissipazione luminosa (ovvero che l’intensità luminosa si attenui a causa del percorso che deve fare prima di arrivare alle foglie). Queste lampade sono ideali per spazi inferiori a 0,8 metri quadri per le fasi di germinazione e di crescita vegetativa, momenti in cui le piante non richiedono particolari intensità luminose e in cui normalmente si usano vasi più piccoli che permettono di raggruppare più piante in uno spazio limitato.

Tuttavia quando si passa in fioritura, si usano vasi più grossi, le piante hanno bisogno di molta più luce per fare fioriture complete e profuse e hanno bisogno di essere spaziate di più tra loro. In questo caso si possono usare lampade a scarica di tipo HPS (temperatura di colore a circa 2700K°, luce giallognola, ideale per la fioritura) e MH (a 4000K°, luce bianca fredda, ideale per la vegetativa). Queste lampade emettono quantità di luce molto maggiori rispetto alle CFL ma anche calore. Per questo motivo bisogna ricordarsi di mantenere una distanza minima tra la lampada e le piante in modo che queste non vengano bruciate nelle parti alte. Se si usano lampade a scarica è sempre importante considerare l’altezza del proprio spazio di coltivazione in modo da essere sicuri che ci sia abbastanza spazio verticale per farci stare tutto.

LAMPADE LED : per la coltivazione in door

Jonni Bongallino APLIMENTO DELL ARGOMENTO lampade per la coltivazione indoor

Usare lampade a LED per far crescere le piante quando la luce solare non è disponibile? Questa tecnologia di illuminazione può rivelarsi molto vantaggiosa: i led sono efficienti, a basso consumo energetico, scaldano poco e durano moltissimo.

Come funzionano?
Ogni pigmento delle piante assorbe alcuni colori di luce meglio di altri. La clorofilla assorbe molto bene la luce rossa e quella blu, ma non quella verde; dato che la pianta utilizza la clorofilla per la fotosintesi, questo processo risulta più efficiente con luce rossa e blu che con l’equivalente di luce verde. 

 

Spetro di assorbimento della luce e fotosintesi clorofiliana

Le classiche lampade di crescita (HID, incandescenza, fluorescenza), utilizzate per coltivazioni indoor, producono una luce con lunghezza d’onda da 380 nm (lampade UV) a circa 880 nm (lampade a infrarossi). Le piante utilizzano lunghezze d’onda da 400 nm (luce blu) a 700 nm (luce rossa) dunque tutte le normali lampade di  crescita emettono una buona parte di luce che le piante non sfruttano efficacemente.

 

 

 

Vi sono inoltre altri svantaggi nell’uso di lampade normali:
– il calore emesso che impedisce di collocare la fonte di luce troppo vicino alle piante
– l’elevato consumo energetico
– la durata della fonte di luce ( i neon andrebbero sostituiti ogni anno perchè perdono la loro luminosità)

Da pochi anni si stanno sperimentando coltivazioni indoor con lampade a LED (Light Emitting Diode), li ha utilizzati anche la NASA per illuminare colture idroponiche nello spazio!

Non presentano tutti gli svantaggi delle tradizionali lampade, ma molti benefici:
consumi bassissimi di energia ( si può risparmiare fino al 90% rispetto ad una normale lampada a incandescenza o fluorescenza)
durata elevata (dagli 8 ai 15 anni di vita)
poco calore emesso ( si evitano così problemi di surriscaldamento, consentendo di posizionare le luci vicino alle piante)
basse tensioni di alimentazione, come 12 Volt
copertura uniforme delle superfici illuminate, grazie all’angolo di proiezione della luce
– possibilità di sperimentare differenti combinazioni di colori (proporzione variabile fra luci rosse e blu)

Il pannello di LED autocostruito in funzione

In vendita si possono trovare pannelli di LED costruiti a questo scopo, relativamente economici (un pannello da 900 LED misti circa 120 euro). Basta una semplice ricerca in internet (cercando “LED grow lamp”).

E POSSIBILE RIPRODURNE UNA VERSIONE CASALINGA

 SI utilizzando piccoli pannelli a LED, in modo da poter sperimentare questa innovativa tecnologia di illuminazione sulle mie piante carnivore.

Ecco quello che si potrebbe utilizzare per  la realizzazione di un pannello luminoso di 48 LED alimentato a 12 Volt: una basetta preforata per circuiti, 12 LED blu ad alta luminosità (3.3V) con lunghezza d’onda di 465nm (nanometer), 36 LED rossi ad alta luminosità (2 V) con lunghezza d’onda di 650nm (nanometer), 4 resistenze da 120 ohms, 6 resistenze da 1 ohms, un alimentatore 12 V DC, un timer meccanico per gestire accensione e spegnimento delle luci, saldatore, filo e stagno.

Per calcolare il circuito e le resistenze ho utilizzato un comodo tool online con il quale si possono progettare altre varianti.

Circuito elettrico del pannello LED

Qui a destra il  circuito che in totale dissipa circa 2,5 W.

Come supporto per i pannelli luminosi ho riciclato un lampadario Ikea, che ha il vantaggio di essere dotato di due porta lampade orientabili in ogni direzione e movibili sulle guide di supporto, le quali servono anche per portare l’ alimentazione. La sicurezza dell’impianto è garantita dalla bassa tensione utilizzata, 12 Volt, che otteniamo dal trasformatore  la cui accensione è regolata dal semplice ed economico timer meccanico.

Dopo poco più di una settimana dalla realizzazione del terrario e dalla messa in funzione dell’illuminazione le piante carnivore sembrano gradire molto le luci.

Qui sotto potete vedere l’ impianto di illuminazione completo in funzione.

Impianto di illuminazione completo

Fonti: 

http://coltivazioneindoor.info

http://www.idroponica.it/

http://www.botanicaurbana.com/

http://it.wikipedia.org/wiki/Pagina_principale

http://www.enjoint.info/?p=249

CHROME PLATING

Il Cromo (Cr) e un acciaio grigio, brillante, e duro che richiede un alto livello di polish e possiede un alto punto di fusione. E indoro, senza sapore e maleabile.
E usato con grande interesse grazie alla sua elevata resistenza alla corrosione e dalla sua durezza. La maggiore scoperta era che l’acciao poteva essere altamente resistante alla corrosione ed discolorazione aggiungendo il cromo con nickel per creare il stainless steel (acciao inossidabile).

250px-Chromium_crystals_and_1cm3_cube
Oro di cromo

Il “Chrome plating” si crea attraverso il processo di “Electroplating” che e una tecnica, usata in ambito industriale, che permette di ricoprire un metallo non prezioso con un sottile strato di un metallo piu prezioso o con altre caratteristiche sfruttando la deposizione Elettrolitica.Puo essere anche applicato su ogetti plastici.

250px-Motorcycle_Reflections_bw_edit

La cromatura include tipicamente queste fasi:

-sgrassaggio (Rimuovere la sporcizia)
-Una pulizia manuale per rimuovere ogni impurita superficiali
-Various pretreatments depending on the substrate
-Posizionamento nella vasca di cromatura, dove viene lasciata riscaldata a temperatura adatta
-Applicazione della corrente di placcatura per il tempo necessario per raggiungere lo spessore desiderato

Il materiale viene immerso in una vasca di placcatura che contiene una soluzione con una concentrazione di cromo. Una carica elettrica viene quindi applicato alla vasca. Lo spessore dello strato di cromo è determinata da quanto tempo il materiale rimane nella vasca. Quando rimosso, il materiale ha un luminoso, brillante strato di cromo sulla superficie.

è generalmente utilizzato per due motivi:

Il primo è per scopi decorativi. E generalmente applicato in strati sottili. Di solito viene applicato sopra una nichelatura lucida per realizzare un aspetto brillante esteticamente più gradevole

La seconda ragione per l’utilizzo di cromo e che può agire come uno strato di protezione. Questo è indicato come il “Cromo duro” ed è generalmente utilizzato in applicazioni automobilistiche e industriali.Il “Cromo duro” viene applicato in strati molto spessi che da una superficie strutturata ai metalli dopo il processo. In questi tipi di applicazioni, Il “Cromo duro” può ridurre l’attrito tra le parte meccaniche, aumentare la resistenza alla corrosione e permette al materiale di sopportare maggiori quantita di sfruttamento (e quindi usura).